• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Sunday, October 26, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

A Coding Guide to Build Flexible Multi-Model Workflows in GluonTS with Synthetic Data, Evaluation, and Advanced Visualizations

Josh by Josh
August 24, 2025
in Al, Analytics and Automation
0
A Coding Guide to Build Flexible Multi-Model Workflows in GluonTS with Synthetic Data, Evaluation, and Advanced Visualizations
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


def plot_advanced_forecasts(test_data, forecasts_dict, series_idx=0):
   """Advanced plotting with multiple models and uncertainty bands"""
   fig, axes = plt.subplots(2, 2, figsize=(15, 10))
   fig.suptitle('Advanced GluonTS Forecasting Results', fontsize=16, fontweight="bold")
  
   if not forecasts_dict:
       fig.text(0.5, 0.5, 'No successful forecasts to display',
               ha="center", va="center", fontsize=20)
       return fig
  
   if series_idx < len(test_data.label):
       ts_label = test_data.label[series_idx]
       ts_input = test_data.input[series_idx]['target']
      
       colors = ['blue', 'red', 'green', 'purple', 'orange']
      
       ax1 = axes[0, 0]
       ax1.plot(range(len(ts_input)), ts_input, 'k-', label="Historical", alpha=0.8, linewidth=2)
       ax1.plot(range(len(ts_input), len(ts_input) + len(ts_label)),
               ts_label, 'k--', label="True Future", alpha=0.8, linewidth=2)
      
       for i, (name, forecasts) in enumerate(forecasts_dict.items()):
           if series_idx < len(forecasts):
               forecast = forecasts[series_idx]
               forecast_range = range(len(ts_input), len(ts_input) + len(forecast.mean))
              
               color = colors[i % len(colors)]
               ax1.plot(forecast_range, forecast.mean,
                       color=color, label=f'{name} Mean', linewidth=2)
              
               try:
                   ax1.fill_between(forecast_range,
                                  forecast.quantile(0.1), forecast.quantile(0.9),
                                  alpha=0.2, color=color, label=f'{name} 80% CI')
               except:
                   pass 
      
       ax1.set_title('Multi-Model Forecasts Comparison', fontsize=12, fontweight="bold")
       ax1.legend()
       ax1.grid(True, alpha=0.3)
       ax1.set_xlabel('Time Steps')
       ax1.set_ylabel('Value')
      
       ax2 = axes[0, 1]
       if all_forecasts:
           first_model = list(all_forecasts.keys())[0]
           if series_idx < len(all_forecasts[first_model]):
               forecast = all_forecasts[first_model][series_idx]
               ax2.scatter(ts_label, forecast.mean, alpha=0.7, s=60)
              
               min_val = min(min(ts_label), min(forecast.mean))
               max_val = max(max(ts_label), max(forecast.mean))
               ax2.plot([min_val, max_val], [min_val, max_val], 'r--', alpha=0.8)
              
               ax2.set_title(f'Prediction vs Actual - {first_model}', fontsize=12, fontweight="bold")
               ax2.set_xlabel('Actual Values')
               ax2.set_ylabel('Predicted Values')
               ax2.grid(True, alpha=0.3)
      
       ax3 = axes[1, 0]
       if all_forecasts:
           first_model = list(all_forecasts.keys())[0]
           if series_idx < len(all_forecasts[first_model]):
               forecast = all_forecasts[first_model][series_idx]
               residuals = ts_label - forecast.mean
               ax3.hist(residuals, bins=15, alpha=0.7, color="skyblue", edgecolor="black")
               ax3.axvline(x=0, color="r", linestyle="--", linewidth=2)
               ax3.set_title(f'Residuals Distribution - {first_model}', fontsize=12, fontweight="bold")
               ax3.set_xlabel('Residuals')
               ax3.set_ylabel('Frequency')
               ax3.grid(True, alpha=0.3)
      
       ax4 = axes[1, 1]
       if evaluation_results:
           metrics = ['MASE', 'sMAPE'] 
           model_names = list(evaluation_results.keys())
           x = np.arange(len(metrics))
           width = 0.35
          
           for i, model_name in enumerate(model_names):
               values = [evaluation_results[model_name].get(metric, 0) for metric in metrics]
               ax4.bar(x + i*width, values, width,
                      label=model_name, color=colors[i % len(colors)], alpha=0.8)
          
           ax4.set_title('Model Performance Comparison', fontsize=12, fontweight="bold")
           ax4.set_xlabel('Metrics')
           ax4.set_ylabel('Value')
           ax4.set_xticks(x + width/2 if len(model_names) > 1 else x)
           ax4.set_xticklabels(metrics)
           ax4.legend()
           ax4.grid(True, alpha=0.3)
       else:
           ax4.text(0.5, 0.5, 'No evaluation\nresults available',
                   ha="center", va="center", transform=ax4.transAxes, fontsize=14)
  
   plt.tight_layout()
   return fig


if all_forecasts and test_data.label:
   print("📈 Creating advanced visualizations...")
   fig = plot_advanced_forecasts(test_data, all_forecasts, series_idx=0)
   plt.show()
  
   print(f"\n🎉 Tutorial completed successfully!")
   print(f"📊 Trained {len(trained_models)} model(s) on {len(df.columns) if 'df' in locals() else 10} time series")
   print(f"🎯 Prediction length: 30 days")
  
   if evaluation_results:
       best_model = min(evaluation_results.items(), key=lambda x: x[1]['MASE'])
       print(f"🏆 Best performing model: {best_model[0]} (MASE: {best_model[1]['MASE']:.4f})")
  
   print(f"\n🔧 Environment Status:")
   print(f"  PyTorch Support: {'✅' if TORCH_AVAILABLE else '❌'}")
   print(f"  MXNet Support: {'✅' if MX_AVAILABLE else '❌'}")
  
else:
   print("⚠️  Creating demonstration plot with synthetic data...")
  
   fig, ax = plt.subplots(1, 1, figsize=(12, 6))
  
   dates = pd.date_range('2020-01-01', periods=100, freq='D')
   ts = 100 + np.cumsum(np.random.normal(0, 2, 100)) + 20 * np.sin(np.arange(100) * 2 * np.pi / 30)
  
   ax.plot(dates[:70], ts[:70], 'b-', label="Historical Data", linewidth=2)
   ax.plot(dates[70:], ts[70:], 'r--', label="Future (Example)", linewidth=2)
   ax.fill_between(dates[70:], ts[70:] - 5, ts[70:] + 5, alpha=0.3, color="red")
  
   ax.set_title('GluonTS Probabilistic Forecasting Example', fontsize=14, fontweight="bold")
   ax.set_xlabel('Date')
   ax.set_ylabel('Value')
   ax.legend()
   ax.grid(True, alpha=0.3)
  
   plt.tight_layout()
   plt.show()
  
   print("\n📚 Tutorial demonstrates advanced GluonTS concepts:")
   print("  • Multi-series dataset generation")
   print("  • Probabilistic forecasting")
   print("  • Model evaluation and comparison")
   print("  • Advanced visualization techniques")
   print("  • Robust error handling")



Source_link

READ ALSO

How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3

Future-Proofing Your AI Engineering Career in 2026

Related Posts

How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3
Al, Analytics and Automation

How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3

October 26, 2025
Future-Proofing Your AI Engineering Career in 2026
Al, Analytics and Automation

Future-Proofing Your AI Engineering Career in 2026

October 26, 2025
AIAllure Video Generator: My Unfiltered Thoughts
Al, Analytics and Automation

AIAllure Video Generator: My Unfiltered Thoughts

October 26, 2025
How to Build a Fully Functional Computer-Use Agent that Thinks, Plans, and Executes Virtual Actions Using Local AI Models
Al, Analytics and Automation

How to Build a Fully Functional Computer-Use Agent that Thinks, Plans, and Executes Virtual Actions Using Local AI Models

October 26, 2025
7 Must-Know Agentic AI Design Patterns
Al, Analytics and Automation

7 Must-Know Agentic AI Design Patterns

October 25, 2025
Tried AIAllure Image Maker for 1 Month: My Experience
Al, Analytics and Automation

Tried AIAllure Image Maker for 1 Month: My Experience

October 25, 2025
Next Post
Bluesky blocks service in Mississippi over age assurance law

Bluesky blocks service in Mississippi over age assurance law

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025

EDITOR'S PICK

Starting Your First AI Stock Trading Bot

Starting Your First AI Stock Trading Bot

August 2, 2025

Marketing de gerações: como fidelizar todos os perfis de consumidores

July 28, 2025
The best action cameras for 2025

The best action cameras for 2025

October 21, 2025
Google launches new AI-powered flight deals tool

Google launches new AI-powered flight deals tool

August 17, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Restrictions on Custom and Lookalike Audiences
  • Less than 24 hours until Disrupt 2025 — and ticket rates rise
  • How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3
  • Google’s first carbon capture and storage project
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?