• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Sunday, August 24, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

A Coding Guide to Build Flexible Multi-Model Workflows in GluonTS with Synthetic Data, Evaluation, and Advanced Visualizations

Josh by Josh
August 24, 2025
in Al, Analytics and Automation
0
A Coding Guide to Build Flexible Multi-Model Workflows in GluonTS with Synthetic Data, Evaluation, and Advanced Visualizations
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


def plot_advanced_forecasts(test_data, forecasts_dict, series_idx=0):
   """Advanced plotting with multiple models and uncertainty bands"""
   fig, axes = plt.subplots(2, 2, figsize=(15, 10))
   fig.suptitle('Advanced GluonTS Forecasting Results', fontsize=16, fontweight="bold")
  
   if not forecasts_dict:
       fig.text(0.5, 0.5, 'No successful forecasts to display',
               ha="center", va="center", fontsize=20)
       return fig
  
   if series_idx < len(test_data.label):
       ts_label = test_data.label[series_idx]
       ts_input = test_data.input[series_idx]['target']
      
       colors = ['blue', 'red', 'green', 'purple', 'orange']
      
       ax1 = axes[0, 0]
       ax1.plot(range(len(ts_input)), ts_input, 'k-', label="Historical", alpha=0.8, linewidth=2)
       ax1.plot(range(len(ts_input), len(ts_input) + len(ts_label)),
               ts_label, 'k--', label="True Future", alpha=0.8, linewidth=2)
      
       for i, (name, forecasts) in enumerate(forecasts_dict.items()):
           if series_idx < len(forecasts):
               forecast = forecasts[series_idx]
               forecast_range = range(len(ts_input), len(ts_input) + len(forecast.mean))
              
               color = colors[i % len(colors)]
               ax1.plot(forecast_range, forecast.mean,
                       color=color, label=f'{name} Mean', linewidth=2)
              
               try:
                   ax1.fill_between(forecast_range,
                                  forecast.quantile(0.1), forecast.quantile(0.9),
                                  alpha=0.2, color=color, label=f'{name} 80% CI')
               except:
                   pass 
      
       ax1.set_title('Multi-Model Forecasts Comparison', fontsize=12, fontweight="bold")
       ax1.legend()
       ax1.grid(True, alpha=0.3)
       ax1.set_xlabel('Time Steps')
       ax1.set_ylabel('Value')
      
       ax2 = axes[0, 1]
       if all_forecasts:
           first_model = list(all_forecasts.keys())[0]
           if series_idx < len(all_forecasts[first_model]):
               forecast = all_forecasts[first_model][series_idx]
               ax2.scatter(ts_label, forecast.mean, alpha=0.7, s=60)
              
               min_val = min(min(ts_label), min(forecast.mean))
               max_val = max(max(ts_label), max(forecast.mean))
               ax2.plot([min_val, max_val], [min_val, max_val], 'r--', alpha=0.8)
              
               ax2.set_title(f'Prediction vs Actual - {first_model}', fontsize=12, fontweight="bold")
               ax2.set_xlabel('Actual Values')
               ax2.set_ylabel('Predicted Values')
               ax2.grid(True, alpha=0.3)
      
       ax3 = axes[1, 0]
       if all_forecasts:
           first_model = list(all_forecasts.keys())[0]
           if series_idx < len(all_forecasts[first_model]):
               forecast = all_forecasts[first_model][series_idx]
               residuals = ts_label - forecast.mean
               ax3.hist(residuals, bins=15, alpha=0.7, color="skyblue", edgecolor="black")
               ax3.axvline(x=0, color="r", linestyle="--", linewidth=2)
               ax3.set_title(f'Residuals Distribution - {first_model}', fontsize=12, fontweight="bold")
               ax3.set_xlabel('Residuals')
               ax3.set_ylabel('Frequency')
               ax3.grid(True, alpha=0.3)
      
       ax4 = axes[1, 1]
       if evaluation_results:
           metrics = ['MASE', 'sMAPE'] 
           model_names = list(evaluation_results.keys())
           x = np.arange(len(metrics))
           width = 0.35
          
           for i, model_name in enumerate(model_names):
               values = [evaluation_results[model_name].get(metric, 0) for metric in metrics]
               ax4.bar(x + i*width, values, width,
                      label=model_name, color=colors[i % len(colors)], alpha=0.8)
          
           ax4.set_title('Model Performance Comparison', fontsize=12, fontweight="bold")
           ax4.set_xlabel('Metrics')
           ax4.set_ylabel('Value')
           ax4.set_xticks(x + width/2 if len(model_names) > 1 else x)
           ax4.set_xticklabels(metrics)
           ax4.legend()
           ax4.grid(True, alpha=0.3)
       else:
           ax4.text(0.5, 0.5, 'No evaluation\nresults available',
                   ha="center", va="center", transform=ax4.transAxes, fontsize=14)
  
   plt.tight_layout()
   return fig


if all_forecasts and test_data.label:
   print("📈 Creating advanced visualizations...")
   fig = plot_advanced_forecasts(test_data, all_forecasts, series_idx=0)
   plt.show()
  
   print(f"\n🎉 Tutorial completed successfully!")
   print(f"📊 Trained {len(trained_models)} model(s) on {len(df.columns) if 'df' in locals() else 10} time series")
   print(f"🎯 Prediction length: 30 days")
  
   if evaluation_results:
       best_model = min(evaluation_results.items(), key=lambda x: x[1]['MASE'])
       print(f"🏆 Best performing model: {best_model[0]} (MASE: {best_model[1]['MASE']:.4f})")
  
   print(f"\n🔧 Environment Status:")
   print(f"  PyTorch Support: {'✅' if TORCH_AVAILABLE else '❌'}")
   print(f"  MXNet Support: {'✅' if MX_AVAILABLE else '❌'}")
  
else:
   print("⚠️  Creating demonstration plot with synthetic data...")
  
   fig, ax = plt.subplots(1, 1, figsize=(12, 6))
  
   dates = pd.date_range('2020-01-01', periods=100, freq='D')
   ts = 100 + np.cumsum(np.random.normal(0, 2, 100)) + 20 * np.sin(np.arange(100) * 2 * np.pi / 30)
  
   ax.plot(dates[:70], ts[:70], 'b-', label="Historical Data", linewidth=2)
   ax.plot(dates[70:], ts[70:], 'r--', label="Future (Example)", linewidth=2)
   ax.fill_between(dates[70:], ts[70:] - 5, ts[70:] + 5, alpha=0.3, color="red")
  
   ax.set_title('GluonTS Probabilistic Forecasting Example', fontsize=14, fontweight="bold")
   ax.set_xlabel('Date')
   ax.set_ylabel('Value')
   ax.legend()
   ax.grid(True, alpha=0.3)
  
   plt.tight_layout()
   plt.show()
  
   print("\n📚 Tutorial demonstrates advanced GluonTS concepts:")
   print("  • Multi-series dataset generation")
   print("  • Probabilistic forecasting")
   print("  • Model evaluation and comparison")
   print("  • Advanced visualization techniques")
   print("  • Robust error handling")



Source_link

READ ALSO

I Tested Rephracy for 30 Days: Here’s what really happened

Build vs Buy for Enterprise AI (2025): A U.S. Market Decision Framework for VPs of AI Product

Related Posts

I Tested Rephracy for 30 Days: Here’s what really happened
Al, Analytics and Automation

I Tested Rephracy for 30 Days: Here’s what really happened

August 24, 2025
Build vs Buy for Enterprise AI (2025): A U.S. Market Decision Framework for VPs of AI Product
Al, Analytics and Automation

Build vs Buy for Enterprise AI (2025): A U.S. Market Decision Framework for VPs of AI Product

August 24, 2025
How They Imitate Your Writing Style and Improve Efficiency
Al, Analytics and Automation

How They Imitate Your Writing Style and Improve Efficiency

August 24, 2025
What is a Voice Agent in AI? Top 9 Voice Agent Platforms to Know (2025)
Al, Analytics and Automation

What is a Voice Agent in AI? Top 9 Voice Agent Platforms to Know (2025)

August 23, 2025
I Tested Mydreamcompanion Video Generator for 1 Month
Al, Analytics and Automation

I Tested Mydreamcompanion Video Generator for 1 Month

August 23, 2025
Google AI Proposes Novel Machine Learning Algorithms for Differentially Private Partition Selection
Al, Analytics and Automation

Google AI Proposes Novel Machine Learning Algorithms for Differentially Private Partition Selection

August 23, 2025
Next Post
Bluesky blocks service in Mississippi over age assurance law

Bluesky blocks service in Mississippi over age assurance law

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

June 7, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025

EDITOR'S PICK

Advanced LinkedIn Networking: How to Connect and Convert

Advanced LinkedIn Networking: How to Connect and Convert

June 4, 2025
OpenAI’s Sora is now available for FREE to all users through Microsoft Bing Video Creator on mobile

OpenAI’s Sora is now available for FREE to all users through Microsoft Bing Video Creator on mobile

June 2, 2025
Order Confirmation Email Examples + Best Practices (2025)

Order Confirmation Email Examples + Best Practices (2025)

July 31, 2025

The Modern Leader series: The anatomy of authentic listening

August 22, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • What It Is and Why It Matters
  • GPT-5 has arrived: What it means for PR and comms pros
  • Grow a Garden Apple Gazelle Pet Wiki
  • Bluesky blocks service in Mississippi over age assurance law
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?