• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Monday, August 11, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Time-Series Transformation Toolkit: Feature Engineering for Predictive Analytics

Josh by Josh
August 11, 2025
in Al, Analytics and Automation
0
Time-Series Transformation Toolkit: Feature Engineering for Predictive Analytics
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Time-Series Transformation Toolkit: Advanced Feature Engineering for Predictive Analytics

Time-Series Transformation Toolkit: Advanced Feature Engineering for Predictive Analytics
Image by Editor | ChatGPT

Introduction

In time series analysis and forecasting, transforming data is often necessary to uncover underlying patterns, stabilize properties like variance, and improve the performance of predictive models. For example, a time series describing product sales might show strong weekly seasonality and the impact of promotional events. In such cases, transforming raw timestamps into categorical features, such as day of the week or holiday flags, might help models capture temporal dependencies and context more effectively.

READ ALSO

Security Concerns With AI Trading Bots (And How to Stay Safe)

From 100,000 to Under 500 Labels: How Google AI Cuts LLM Training Data by Orders of Magnitude

This article demonstrates a moderately advanced, feature-engineering approach to constructing meaningful temporal features and applying various transformations for predictive analytics.

We’ll explore how to:

  • Add multiple lagging features to a time series.
  • Incorporate rolling statistics like a rolling mean over a sliding time window.
  • Apply differencing to capture variations in counts across a time interval.

A Gentle Hands-On Dive

We will use the Bike Sharing Dataset, a common time series dataset that contains daily recordings with features like date (dteday), daily bike rental count (cnt), average temperature (temp), day of the week (weekday), whether the day is a holiday (holiday), and whether it is a working day (workingday).

import pandas as pd

 

url = “https://raw.githubusercontent.com/deep-learning-with-pytorch/dlwpt-code/master/data/p1ch4/bike-sharing-dataset/day.csv”

df = pd.read_csv(url, parse_dates=[‘dteday’])

 

df[[‘dteday’, ‘cnt’, ‘temp’, ‘weekday’, ‘holiday’, ‘workingday’]].head()

In time series data, before any preprocessing and predictive tasks, it is important to set the date-time attribute as the index. In this case, that honor will be granted to the dteday attribute, and this is how it is done in Pandas:

df[‘date’] = pd.to_datetime(df[‘dteday’])

df.set_index(‘date’, inplace=True)

We’ll also perform a simple feature engineering task (not quite advanced yet): determining if a date is a weekend and extracting the month.

df[‘is_weekend’] = df[‘weekday’].isin([5, 6]).astype(int)

df[‘month’] = df.index.month

Adding lag features is a feature engineering technique used on time series data to incorporate some “short-term memory” of past records in a given record. This way, values for attributes like the rental count on previous days can be used as predictor attributes.

df[‘cnt_lag1’] = df[‘cnt’].shift(1)

df[‘cnt_lag2’] = df[‘cnt’].shift(2)

df[‘cnt_lag7’] = df[‘cnt’].shift(7)

Importantly, the shift(n) function does not calculate an average value for the specified attribute over the past n days or time instants: it just takes the value that the attribute had n time instants before.

Another feature engineering technique that is very useful in time series forecasting is the so-called rolling statistics, which use a sliding time window to calculate a mean or any other aggregate value over the period defined by that window. For instance, the code below adds two attributes to the dataset: one with the 7-day rolling mean — i.e., the mean of the previous seven days’ values for a given attribute — and a 7-day rolling standard deviation.

df[‘cnt_roll7_mean’] = df[‘cnt’].shift(1).rolling(window=7).mean()

df[‘cnt_roll7_std’] = df[‘cnt’].shift(1).rolling(window=7).std()

Rolling statistics help gain insight into how a value like rental count behaves over time, helping to easily identify trends and variability patterns.

Moreover, differencing, consisting of calculating the difference between the present value of an attribute and its value n times back, is also useful for revealing how values change over time, beyond merely looking at their raw magnitude.
This can be easily done by using the shift(n) function again combined with a column-level subtraction, as follows:

df[‘cnt_diff1’] = df[‘cnt’] – df[‘cnt’].shift(1)

df[‘cnt_diff7’] = df[‘cnt’] – df[‘cnt’].shift(7)

Notice that using the three feature transformations explored above results in the appearance of some missing values (NaN) due to shifting and rolling over the first few instances of the dataset, where there is insufficient past information to perform the desired transformations. You may need to decide how to handle them, for instance, by simply removing those rows from the dataset (if the time series is large enough, removing the first few rows generally shouldn’t affect predictive performance).

df_clean = df.dropna(subset=[

    ‘cnt_lag1’, ‘cnt_lag2’, ‘cnt_lag7’,

    ‘cnt_roll7_mean’, ‘cnt_roll7_std’,

    ‘cnt_diff1’, ‘cnt_diff7’

])

And so, we’ve ended up with a time series dataset that contains plenty of useful, additional information for predictive analysis as a result of some transformation-driven feature engineering operations. Great job!

Conclusion

This article demonstrated some strategies to extract and unlock meaningful temporal features in time series data using lagging, rolling statistics, and differencing. When applied properly, these strategies will turn your raw time series data into a much better fit for predictive analysis processes, particularly when building machine learning models for forecasting.



Source_link

Related Posts

Security Concerns With AI Trading Bots (And How to Stay Safe)
Al, Analytics and Automation

Security Concerns With AI Trading Bots (And How to Stay Safe)

August 10, 2025
From 100,000 to Under 500 Labels: How Google AI Cuts LLM Training Data by Orders of Magnitude
Al, Analytics and Automation

From 100,000 to Under 500 Labels: How Google AI Cuts LLM Training Data by Orders of Magnitude

August 10, 2025
7 Pandas Tricks for Time-Series Feature Engineering
Al, Analytics and Automation

7 Pandas Tricks for Time-Series Feature Engineering

August 10, 2025
I Tested Bitsgap: Some Features Surprised Me
Al, Analytics and Automation

I Tested Bitsgap: Some Features Surprised Me

August 10, 2025
9 Agentic AI Workflow Patterns Transforming AI Agents in 2025
Al, Analytics and Automation

9 Agentic AI Workflow Patterns Transforming AI Agents in 2025

August 10, 2025
Grok’s Share and Claude’s Leak: 5 Things We Can Learn From System Prompts
Al, Analytics and Automation

Grok’s Share and Claude’s Leak: 5 Things We Can Learn From System Prompts

August 9, 2025
Next Post
AI’s promise of opportunity masks a reality of managed displacement

AI's promise of opportunity masks a reality of managed displacement

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

June 7, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025

EDITOR'S PICK

Medical Data Entry Challenges: Guide for Healthcare Professionals

Medical Data Entry Challenges: Guide for Healthcare Professionals

May 28, 2025
Zuckerberg’s boring, bleak AI bet

Zuckerberg’s boring, bleak AI bet

August 9, 2025
How Brand Loyalty Creates Enduring Profitable Growth

How Brand Loyalty Creates Enduring Profitable Growth

May 28, 2025
All the Android features Apple announced at WWDC 2025

All the Android features Apple announced at WWDC 2025

June 16, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Grow a Garden Spaghetti Recipe
  • AI’s promise of opportunity masks a reality of managed displacement
  • Time-Series Transformation Toolkit: Feature Engineering for Predictive Analytics
  • Change breaks trust. Here’s how communicators can rebuild it.
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?