• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Sunday, October 26, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

QeRL: NVFP4-Quantized Reinforcement Learning (RL) Brings 32B LLM Training to a Single H100—While Improving Exploration

Josh by Josh
October 16, 2025
in Al, Analytics and Automation
0
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


What would you build if you could run Reinforcement Learning (RL) post-training on a 32B LLM in 4-bit NVFP4—on a single H100—with BF16-level accuracy and 1.2–1.5× step speedups? NVIDIA researchers (with collaborators from MIT, HKU, and Tsinghua) have open-sourced QeRL (Quantization-enhanced Reinforcement Learning), a training framework that pushes Reinforcement Learning (RL) post-training into 4-bit FP4 (NVFP4) while keeping gradient math in higher precision via LoRA. The research team reports >1.5× speedups in the rollout phase, ~1.8× end-to-end vs QLoRA in one setting, and the first demonstration of RL training for a 32B policy on a single H100-80GB GPU.

https://arxiv.org/pdf/2510.11696

What QeRL changes in the Reinforcement Learning (RL) loop?

Most RLHF/GRPO/DAPO pipelines spend the bulk of wall-clock time in rollouts (token generation). QeRL shifts the policy’s weight path to NVFP4 (FP4) with dual-level scaling and keeps logits/gradients in higher precision via LoRA, so backprop remains stable while the sampling path hits hardware-efficient FP4×BF16 kernels (Marlin). The result is faster prefill/decoding during rollouts without maintaining a separate full-precision policy.

Mechanically, the research team integrates Marlin-based FP4 kernels in both rollout and prefill, while LoRA limits trainable parameters. This directly targets the stage that dominates RL cost and latency for long reasoning traces.

https://arxiv.org/pdf/2510.11696

Quantization as exploration, made schedulable

A core empirical finding: deterministic FP4 quantization raises policy entropy, flattening token distributions early in training and improving exploration versus 16-bit LoRA and NF4-based QLoRA baselines. To control that effect over time, QeRL introduces Adaptive Quantization Noise (AQN)—channel-wise Gaussian perturbations mapped into LayerNorm scale parameters and annealed with an exponential schedule. This keeps kernel fusion intact (no extra weight tensors) while transitioning from exploration to exploitation.

In ablations, QeRL shows faster reward growth and higher final scores on math-reasoning tasks under both GRPO and DAPO, aligning with the hypothesis that structured noise in parameter space can be a useful exploration driver in RL, even though such noise is typically detrimental in supervised fine-tuning.

Reported results

On Qwen2.5 backbone model, the research team show that NVFP4+LoRA outperforms vanilla LoRA and QLoRA in rollout throughput and overall training time, with >2× rollout throughput on 14B/32B models against QLoRA and ~1.8× end-to-end vs QLoRA in a representative setup. They also demonstrate training a 32B policy with GRPO on a single H100-80GB, enabled by the lower memory footprint of weight-only FP4.

Accuracy is competitive with higher-precision baselines. For a 7B model, the research team reports GSM8K = 90.8% and MATH500 = 77.4%, surpassing 16-bit LoRA and QLoRA under their setup and matching full-parameter fine-tuning. Across broader math benchmarks (e.g., BigMath), QeRL maintains parity or advantage, while converging faster due to improved exploration.

https://arxiv.org/pdf/2510.11696

What this is—and isn’t?

QeRL is weight-only FP4 with LoRA updates; it does not claim FP4 precision for logits/gradients. The benefits concentrate in rollout/prefill throughput and memory footprint, with empirical evidence that quantization-induced entropy aids RL exploration when AQN modulates it over training. Generalization to modalities beyond math-reasoning tasks or to safety/tool-use RL depends on reward design and sequence lengths.

Key Takeaways

  • QeRL combines NVFP4 4-bit weight quantization with LoRA to accelerate the rollout phase and cut memory, enabling RL for a 32B LLM on a single H100-80GB.
  • Quantization acts as exploration: FP4 increases policy entropy, while Adaptive Quantization Noise (AQN) schedules channel-wise noise via LayerNorm scales.
  • Reported efficiency: >1.5× rollout speedups vs 16-bit LoRA and ~1.8× end-to-end vs QLoRA; >2× rollout throughput vs QLoRA on 14B/32B setups.
  • Accuracy holds: Qwen2.5-7B reaches 90.8% on GSM8K and 77.4% on MATH500, matching full-parameter fine-tuning under the paper’s setup.
  • NVFP4 is a hardware-optimized 4-bit floating format with two-level scaling (FP8 E4M3 block scalers + FP32 tensor scale), enabling efficient Marlin-based kernels.

QeRL speeds up the RL rollout stage. It quantizes weights to NVFP4 and keeps updates and logits in higher precision using LoRA. It reports >1.5× rollout speedups and can train a 32B policy on a single H100-80GB GPU. It adds Adaptive Quantization Noise to make exploration a controlled signal during training. Results are shown mainly on math-reasoning tasks using GRPO and DAPO. The gains rely on NVFP4 kernel support such as Marlin.


Check out the FULL CODES here and Paper. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.


Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.

🙌 Follow MARKTECHPOST: Add us as a preferred source on Google.



Source_link

READ ALSO

Tried Fantasy GF Hentai Generator for 1 Month: My Experience

How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3

Related Posts

Tried Fantasy GF Hentai Generator for 1 Month: My Experience
Al, Analytics and Automation

Tried Fantasy GF Hentai Generator for 1 Month: My Experience

October 26, 2025
How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3
Al, Analytics and Automation

How to Build, Train, and Compare Multiple Reinforcement Learning Agents in a Custom Trading Environment Using Stable-Baselines3

October 26, 2025
Future-Proofing Your AI Engineering Career in 2026
Al, Analytics and Automation

Future-Proofing Your AI Engineering Career in 2026

October 26, 2025
AIAllure Video Generator: My Unfiltered Thoughts
Al, Analytics and Automation

AIAllure Video Generator: My Unfiltered Thoughts

October 26, 2025
How to Build a Fully Functional Computer-Use Agent that Thinks, Plans, and Executes Virtual Actions Using Local AI Models
Al, Analytics and Automation

How to Build a Fully Functional Computer-Use Agent that Thinks, Plans, and Executes Virtual Actions Using Local AI Models

October 26, 2025
7 Must-Know Agentic AI Design Patterns
Al, Analytics and Automation

7 Must-Know Agentic AI Design Patterns

October 25, 2025
Next Post
Engaged-View Attribution Changes – Jon Loomer Digital

Engaged-View Attribution Changes - Jon Loomer Digital

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025

EDITOR'S PICK

5 Ways & How It Works

5 Ways & How It Works

August 6, 2025
Make A Marketing Failure Your Next Big Success

Make A Marketing Failure Your Next Big Success

May 31, 2025
Kraft Heinz: A Case Of Brand Mismanagement And Value Destruction

Kraft Heinz: A Case Of Brand Mismanagement And Value Destruction

July 22, 2025
In New Spot from Mother, Claude.AI Is the AI for Problem Solvers

In New Spot from Mother, Claude.AI Is the AI for Problem Solvers

October 1, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • This is who Americans trust most for news (it’s not the media or AI)
  • Best GoPro Camera (2025): Compact, Budget, Accessories
  • Tried Fantasy GF Hentai Generator for 1 Month: My Experience
  • The Power of Multi-Channel Discovery in Best Answer Marketing – TopRank® Marketing
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?