• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Friday, January 23, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Pretraining a Llama Model on Your Local GPU

Josh by Josh
December 30, 2025
in Al, Analytics and Automation
0
Pretraining a Llama Model on Your Local GPU
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


import dataclasses

import os

 

import datasets

import tqdm

import tokenizers

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim.lr_scheduler as lr_scheduler

from torch import Tensor

 

# Load the tokenizer

tokenizer = tokenizers.Tokenizer.from_file(“bpe_50K.json”)

 

# Load the dataset

dataset = datasets.load_dataset(“HuggingFaceFW/fineweb”, “sample-10BT”, split=“train”)

 

# Build the model

@dataclasses.dataclass

class LlamaConfig:

    “”“Define Llama model hyperparameters.”“”

    vocab_size: int = 50000  # Size of the tokenizer vocabulary

    max_position_embeddings: int = 2048  # Maximum sequence length

    hidden_size: int = 768  # Dimension of hidden layers

    intermediate_size: int = 4*768  # Dimension of MLP’s hidden layer

    num_hidden_layers: int = 12  # Number of transformer layers

    num_attention_heads: int = 12  # Number of attention heads

    num_key_value_heads: int = 3  # Number of key-value heads for GQA

 

 

def rotate_half(x: Tensor) -> Tensor:

    “”“Rotates half the hidden dims of the input.

 

    This is a helper function for rotary position embeddings (RoPE).

    For a tensor of shape (…, d), it returns a tensor where the last

    d/2 dimensions are rotated by swapping and negating.

 

    Args:

        x: Input tensor of shape (…, d)

 

    Returns:

        Tensor of same shape with rotated last dimension

    ““”

    x1, x2 = x.chunk(2, dim=–1)

    return torch.cat((–x2, x1), dim=–1)  # Concatenate with rotation

 

 

class RotaryPositionEncoding(nn.Module):

    “”“Rotary position encoding.”“”

 

    def __init__(self, dim: int, max_position_embeddings: int) -> None:

        “”“Initialize the RotaryPositionEncoding module

 

        Args:

            dim: The hidden dimension of the input tensor to which RoPE is applied

            max_position_embeddings: The maximum sequence length of the input tensor

        ““”

        super().__init__()

        self.dim = dim

        self.max_position_embeddings = max_position_embeddings

        # compute a matrix of n\theta_i

        N = 10_000.0

        inv_freq = 1.0 / (N ** (torch.arange(0, dim, 2) / dim))

        inv_freq = torch.cat((inv_freq, inv_freq), dim=–1)

        position = torch.arange(max_position_embeddings)

        sinusoid_inp = torch.outer(position, inv_freq)

        # save cosine and sine matrices as buffers, not parameters

        self.register_buffer(“cos”, sinusoid_inp.cos())

        self.register_buffer(“sin”, sinusoid_inp.sin())

 

    def forward(self, x: Tensor) -> Tensor:

        “”“Apply RoPE to tensor x

 

        Args:

            x: Input tensor of shape (batch_size, seq_length, num_heads, head_dim)

 

        Returns:

            Output tensor of shape (batch_size, seq_length, num_heads, head_dim)

        ““”

        batch_size, seq_len, num_heads, head_dim = x.shape

        dtype = x.dtype

        # transform the cosine and sine matrices to 4D tensor and the same dtype as x

        cos = self.cos.to(dtype)[:seq_len].view(1, seq_len, 1, –1)

        sin = self.sin.to(dtype)[:seq_len].view(1, seq_len, 1, –1)

        # apply RoPE to x

        output = (x * cos) + (rotate_half(x) * sin)

        return output

 

 

class LlamaAttention(nn.Module):

    “”“Grouped-query attention with rotary embeddings.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        super().__init__()

        self.hidden_size = config.hidden_size

        self.num_heads = config.num_attention_heads

        self.head_dim = self.hidden_size // self.num_heads

        self.num_kv_heads = config.num_key_value_heads  # GQA: H_kv < H_q

 

        # hidden_size must be divisible by num_heads

        assert (self.head_dim * self.num_heads) == self.hidden_size

 

        # Linear layers for Q, K, V projections

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)

        self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)

        self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)

        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

 

    def forward(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:

        bs, seq_len, dim = hidden_states.size()

 

        # Project inputs to Q, K, V

        query_states = self.q_proj(hidden_states).view(bs, seq_len, self.num_heads, self.head_dim)

        key_states = self.k_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)

        value_states = self.v_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)

 

        # Apply rotary position embeddings

        query_states = rope(query_states)

        key_states = rope(key_states)

 

        # Transpose tensors from BSHD to BHSD dimension for scaled_dot_product_attention

        query_states = query_states.transpose(1, 2)

        key_states = key_states.transpose(1, 2)

        value_states = value_states.transpose(1, 2)

 

        # Use PyTorch’s optimized attention implementation

        # setting is_causal=True is incompatible with setting explicit attention mask

        attn_output = F.scaled_dot_product_attention(

            query_states,

            key_states,

            value_states,

            attn_mask=attn_mask,

            dropout_p=0.0,

            enable_gqa=True,

        )

 

        # Transpose output tensor from BHSD to BSHD dimension, reshape to 3D, and then project output

        attn_output = attn_output.transpose(1, 2).reshape(bs, seq_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output

 

 

class LlamaMLP(nn.Module):

    “”“Feed-forward network with SwiGLU activation.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        super().__init__()

        # Two parallel projections for SwiGLU

        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

        self.act_fn = F.silu  # SwiGLU activation function

        # Project back to hidden size

        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)

 

    def forward(self, x: Tensor) -> Tensor:

        # SwiGLU activation: multiply gate and up-projected inputs

        gate = self.act_fn(self.gate_proj(x))

        up = self.up_proj(x)

        return self.down_proj(gate * up)

 

 

class LlamaDecoderLayer(nn.Module):

    “”“Single transformer layer for a Llama model.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        super().__init__()

        self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)

        self.self_attn = LlamaAttention(config)

        self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)

        self.mlp = LlamaMLP(config)

 

    def forward(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:

        # First residual block: Self-attention

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        attn_outputs = self.self_attn(hidden_states, rope=rope, attn_mask=attn_mask)

        hidden_states = attn_outputs + residual

 

        # Second residual block: MLP

        residual = hidden_states

        hidden_states = self.post_attention_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states) + residual

        return hidden_states

 

 

class LlamaModel(nn.Module):

    “”“The full Llama model without any pretraining heads.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        super().__init__()

        self.rotary_emb = RotaryPositionEncoding(

            config.hidden_size // config.num_attention_heads,

            config.max_position_embeddings,

        )

 

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)

        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])

        self.norm = nn.RMSNorm(config.hidden_size, eps=1e–5)

 

    def forward(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:

        # Convert input token IDs to embeddings

        hidden_states = self.embed_tokens(input_ids)

        # Process through all transformer layers, then the final norm layer

        for layer in self.layers:

            hidden_states = layer(hidden_states, rope=self.rotary_emb, attn_mask=attn_mask)

        hidden_states = self.norm(hidden_states)

        # Return the final hidden states

        return hidden_states

 

 

class LlamaForPretraining(nn.Module):

    def __init__(self, config: LlamaConfig) -> None:

        super().__init__()

        self.base_model = LlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

 

    def forward(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:

        hidden_states = self.base_model(input_ids, attn_mask)

        return self.lm_head(hidden_states)

 

 

def create_causal_mask(seq_len: int, device: torch.device, dtype: torch.dtype = torch.float32) -> Tensor:

    “”“Create a causal mask for self-attention.

 

    Args:

        seq_len: Length of the sequence

        device: Device to create the mask on

        dtype: Data type of the mask

 

    Returns:

        Causal mask of shape (seq_len, seq_len)

    ““”

    mask = torch.full((seq_len, seq_len), float(‘-inf’), device=device, dtype=dtype) \

                .triu(diagonal=1)

    return mask

 

 

def create_padding_mask(batch, padding_token_id, device: torch.device, dtype: torch.dtype = torch.float32) -> Tensor:

    “”“Create a padding mask for a batch of sequences for self-attention.

 

    Args:

        batch: Batch of sequences, shape (batch_size, seq_len)

        padding_token_id: ID of the padding token

 

    Returns:

        Padding mask of shape (batch_size, 1, seq_len, seq_len)

    ““”

    padded = torch.zeros_like(batch, device=device, dtype=dtype) \

                  .masked_fill(batch == padding_token_id, float(‘-inf’))

    mask = padded[:,:,None] + padded[:,None,:]

    return mask[:, None, :, :]

 

 

# Generator function to create padded sequences of fixed length

class PretrainingDataset(torch.utils.data.Dataset):

    def __init__(self, dataset: datasets.Dataset, tokenizer: tokenizers.Tokenizer,

                 seq_length: int, device: torch.device = None):

        self.dataset = dataset

        self.tokenizer = tokenizer

        self.device = device

        self.seq_length = seq_length

        self.bot = tokenizer.token_to_id(“[BOT]”)

        self.eot = tokenizer.token_to_id(“[EOT]”)

        self.pad = tokenizer.token_to_id(“[PAD]”)

 

    def __len__(self):

        return len(self.dataset)

 

    def __getitem__(self, index):

        “”“Get a sequence of token ids from the dataset. [BOT] and [EOT] tokens

        are added. Clipped and padded to the sequence length.

        ““”

        seq = self.dataset[index][“text”]

        tokens: list[int] = [self.bot] + self.tokenizer.encode(seq).ids + [self.eot]

        # pad to target sequence length

        toklen = len(tokens)

        if toklen < self.seq_length+1:

            pad_length = self.seq_length+1 – toklen

            tokens += [self.pad] * pad_length

        # return the sequence

        x = torch.tensor(tokens[:self.seq_length], dtype=torch.int64, device=self.device)

        y = torch.tensor(tokens[1:self.seq_length+1], dtype=torch.int64, device=self.device)

        return x, y

 

# Create pretraining model with default config

model_config = LlamaConfig()

device = torch.device(“cuda”) if torch.cuda.is_available() else torch.device(“cpu”)

model = LlamaForPretraining(model_config).to(device)

 

# print the model size

print(f“Model parameters size: {sum(p.numel() for p in model.parameters()) / 1024**2:.2f} M”)

print(f“Model buffers size: {sum(p.numel() for p in model.buffers()) / 1024**2:.2f} M”)

 

# Training parameters

epochs = 3

learning_rate = 1e–3

batch_size = 8

seq_length = 512

num_warmup_steps = 1000

PAD_TOKEN_ID = tokenizer.token_to_id(“[PAD]”)

 

# DataLoader, optimizer, scheduler, and loss function

model.train()

dataloader = torch.utils.data.DataLoader(

    PretrainingDataset(dataset, tokenizer, seq_length, device),

    batch_size=batch_size

)

optimizer = torch.optim.AdamW(

    model.parameters(), lr=learning_rate, betas=(0.9, 0.95), eps=1e–8, weight_decay=0.01

)

num_training_steps = len(dataloader) * epochs

warmup_scheduler = lr_scheduler.LinearLR(

    optimizer,

    start_factor=0.1, end_factor=1.0, total_iters=num_warmup_steps

)

cosine_scheduler = lr_scheduler.CosineAnnealingLR(

    optimizer,

    T_max=num_training_steps – num_warmup_steps,

    eta_min=0

)

scheduler = lr_scheduler.SequentialLR(

    optimizer,

    schedulers=[warmup_scheduler, cosine_scheduler],

    milestones=[num_warmup_steps]

)

loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_TOKEN_ID)

 

# look for last checkpoint

if os.path.exists(“llama_pretraining_checkpoint.pth”):

    checkpoint = torch.load(“llama_pretraining_checkpoint.pth”)

    begin_epoch = checkpoint[“epoch”]

    begin_batch = checkpoint[“batch”]

    model.load_state_dict(checkpoint[“model”])

    optimizer.load_state_dict(checkpoint[“optimizer”])

    scheduler.load_state_dict(checkpoint[“scheduler”])

    del checkpoint

    print(f“Resuming training from epoch {begin_epoch} and batch {begin_batch}”)

else:

    begin_epoch = 0

    begin_batch = 0

 

# start training

for epoch in range(begin_epoch, epochs):

    dataloader = torch.utils.data.DataLoader(

        PretrainingDataset(

            dataset.skip(begin_batch * batch_size),

            tokenizer,

            seq_length,

            device,

        ),

        batch_size=batch_size

    )

    pbar = tqdm.tqdm(dataloader, desc=f“Epoch {epoch+1}/{epochs}”)

    for batch_id, batch in enumerate(pbar):

        if (begin_batch + batch_id) % 1000 == 0:

            # checkpoint the model and optimizer state

            torch.save({

                “model”: model.state_dict(),

                “optimizer”: optimizer.state_dict(),

                “scheduler”: scheduler.state_dict(),

                “epoch”: epoch,

                “batch”: batch_id + begin_batch,

            }, f“llama_pretraining_checkpoint.pth”)

        # get batched data

        input_ids, target_ids = batch

        # create attention mask: causal mask + padding mask

        attn_mask = create_causal_mask(input_ids.shape[1], device) + \

                    create_padding_mask(input_ids, PAD_TOKEN_ID, device)

        # extract output from model

        logits = model(input_ids, attn_mask)

        # compute loss: cross-entropy between logits and target, ignoring padding tokens

        loss = loss_fn(logits.view(–1, logits.size(–1)), target_ids.view(–1))

        # backward with loss and apply gradient clipping

        optimizer.zero_grad()

        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

        optimizer.step()

        scheduler.step()

        pbar.set_postfix(loss=loss.item())

        pbar.update(1)

    begin_batch = 0   # reset for next epoch

    pbar.close()

 

# Save the model

torch.save(model.state_dict(), “llama_pretraining_model.pth”)

torch.save(model.base_model.state_dict(), “llama_model.pth”)



Source_link

READ ALSO

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents

Related Posts

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future
Al, Analytics and Automation

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future

January 22, 2026
Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents
Al, Analytics and Automation

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents

January 22, 2026
FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
Al, Analytics and Automation

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

January 22, 2026
Al, Analytics and Automation

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

January 21, 2026
Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News
Al, Analytics and Automation

Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

January 21, 2026
What are Context Graphs? – MarkTechPost
Al, Analytics and Automation

What are Context Graphs? – MarkTechPost

January 21, 2026
Next Post
Dark Social: What It Is and How to Measure in ABM

Dark Social: What It Is and How to Measure in ABM

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

The 9 Best Social Media Marketing Courses in 2025

The 9 Best Social Media Marketing Courses in 2025

December 6, 2025

Perfecting your mixternal communications strategy

October 19, 2025
AI could take your job — and your freedom?

AI could take your job — and your freedom?

November 4, 2025
How to Combine Facebook Ads With Google Ads

How to Combine Facebook Ads With Google Ads

June 11, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Legislators Push to Make Companies Tell Customers When Their Products Will Die
  • Higher-Ed in 2026: AI Targeting for Higher Education from Brand Awareness to Enrollment
  • NRF 2026: 5 Retail Shifts You Can’t Ignore
  • Agentiiv enters strategic technology partnership with the Vector Institute
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?