• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Wednesday, October 8, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Technology And Software

Nvidia’s open Nemotron-Nano-9B-v2 has toggle on/off reasoning

Josh by Josh
August 19, 2025
in Technology And Software
0
Nvidia’s open Nemotron-Nano-9B-v2 has toggle on/off reasoning
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

READ ALSO

The best Amazon deals on Kindles, Echo speakers, Fire TV devices and more for Prime Day

Prime Day 2025 – We’re Tracking Deals Live


Want smarter insights in your inbox? Sign up for our weekly newsletters to get only what matters to enterprise AI, data, and security leaders. Subscribe Now


Small models are having a moment. On the heels of the release of a new AI vision model small enough to fit on a smartwatch from MIT spinoff Liquid AI, and a model small enough to run on a smartphone from Google, Nvidia is joining the party today with a new small language model (SLM) of its own, Nemotron-Nano-9B-V2, which attained the highest performance in its class on selected benchmarks and comes with the ability for users to toggle on and off AI “reasoning,” that is, self-checking before outputting an answer.

While the 9 billion parameters are larger than some of the multimillion parameter small models VentureBeat has covered recently, Nvidia notes it is a meaningful reduction from its original size of 12 billion parameters and is designed to fit on a single Nvidia A10 GPU.

As Oleksii Kuchiaev, Nvidia Director of AI Model Post-Training, said on X in response to a question I submitted to him: “The 12B was pruned to 9B to specifically fit A10 which is a popular GPU choice for deployment. It is also a hybrid model which allows it to process a larger batch size and be up to 6x faster than similar sized transformer models.”

For context, many leading LLMs are in the 70+ billion parameter range (recall parameters refer to the internal settings governing the model’s behavior, with more generally denoting a larger and more capable, yet more compute intensive model).


AI Scaling Hits Its Limits

Power caps, rising token costs, and inference delays are reshaping enterprise AI. Join our exclusive salon to discover how top teams are:

  • Turning energy into a strategic advantage
  • Architecting efficient inference for real throughput gains
  • Unlocking competitive ROI with sustainable AI systems

Secure your spot to stay ahead: https://bit.ly/4mwGngO


The model handles multiple languages, including English, German, Spanish, French, Italian, Japanese, and in extended descriptions, Korean, Portuguese, Russian, and Chinese. It’s suitable for both instruction following and code generation.

Nemotron-Nano-9B-V2 and its pre-training datasets available right now on Hugging Face and through the company’s model catalog.

A fusion of Transformer and Mamba architectures

It’s based on Nemotron-H, a set of hybrid Mamba-Transformer models that form the foundation for the company’s latest offerings.

While most popular LLMs are pure “Transformer” models, which rely entirely on attention layers, they can become costly in memory and compute as sequence lengths grow.

Instead, Nemotron-H models and others using the Mamba architecture developed by researchers at Carnegie Mellon University and Princeton, also weave in selective state space models (or SSMs), which can handle very long sequences of information in and out by maintaining state.

These layers scale linearly with sequence length and can process contexts much longer than standard self-attention without the same memory and compute overhead.

A hybrid Mamba-Transformer reduces those costs by substituting most of the attention with linear-time state space layers, achieving up to 2–3× higher throughput on long contexts with comparable accuracy.

Other AI labs beyond Nvidia such as Ai2 have also released models based on the Mamba architecture.

Toggle on/of reasoning using language

Nemotron-Nano-9B-v2 is positioned as a unified, text-only chat and reasoning model trained from scratch.

The system defaults to generating a reasoning trace before providing a final answer, though users can toggle this behavior through simple control tokens such as /think or /no_think.

The model also introduces runtime “thinking budget” management, which allows developers to cap the number of tokens devoted to internal reasoning before the model completes a response.

This mechanism is aimed at balancing accuracy with latency, particularly in applications like customer support or autonomous agents.

Benchmarks tell a promising story

Evaluation results highlight competitive accuracy against other open small-scale models. Tested in “reasoning on” mode using the NeMo-Skills suite, Nemotron-Nano-9B-v2 reaches 72.1 percent on AIME25, 97.8 percent on MATH500, 64.0 percent on GPQA, and 71.1 percent on LiveCodeBench.

Scores on instruction following and long-context benchmarks are also reported: 90.3 percent on IFEval, 78.9 percent on the RULER 128K test, and smaller but measurable gains on BFCL v3 and the HLE benchmark.

Across the board, Nano-9B-v2 shows higher accuracy than Qwen3-8B, a common point of comparison.

Nvidia illustrates these results with accuracy-versus-budget curves that show how performance scales as the token allowance for reasoning increases. The company suggests that careful budget control can help developers optimize both quality and latency in production use cases.

Trained on synthetic datasets

Both the Nano model and the Nemotron-H family rely on a mixture of curated, web-sourced, and synthetic training data.

The corpora include general text, code, mathematics, science, legal, and financial documents, as well as alignment-style question-answering datasets.

Nvidia confirms the use of synthetic reasoning traces generated by other large models to strengthen performance on complex benchmarks.

Licensing and commercial use

The Nano-9B-v2 model is released under the Nvidia Open Model License Agreement, last updated in June 2025.

The license is designed to be permissive and enterprise-friendly. Nvidia explicitly states that the models are commercially usable out of the box, and that developers are free to create and distribute derivative models.

Importantly, Nvidia does not claim ownership of any outputs generated by the model, leaving responsibility and rights with the developer or organization using it.

For an enterprise developer, this means the model can be put into production immediately without negotiating a separate commercial license or paying fees tied to usage thresholds, revenue levels, or user counts. There are no clauses requiring a paid license once a company reaches a certain scale, unlike some tiered open licenses used by other providers.

That said, the agreement does include several conditions enterprises must observe:

  • Guardrails: Users cannot bypass or disable built-in safety mechanisms (referred to as “guardrails”) without implementing comparable replacements suited to their deployment.
  • Redistribution: Any redistribution of the model or derivatives must include the Nvidia Open Model License text and attribution (“Licensed by Nvidia Corporation under the Nvidia Open Model License”).
  • Compliance: Users must comply with trade regulations and restrictions (e.g., U.S. export laws).
  • Trustworthy AI terms: Usage must align with Nvidia Trustworthy AI guidelines, which cover responsible deployment and ethical considerations.
  • Litigation clause: If a user initiates copyright or patent litigation against another entity alleging infringement by the model, the license automatically terminates.

These conditions focus on legal and responsible use rather than commercial scale. Enterprises do not need to seek additional permission or pay royalties to Nvidia simply for building products, monetizing them, or scaling their user base. Instead, they must make sure deployment practices respect safety, attribution, and compliance obligations.

Positioning in the market

With Nemotron-Nano-9B-v2, Nvidia is targeting developers who need a balance of reasoning capability and deployment efficiency at smaller scales.

The runtime budget control and reasoning-toggle features are meant to give system builders more flexibility in managing accuracy versus response speed.

Their release on Hugging Face and Nvidia’s model catalog indicates that they are meant to be broadly accessible for experimentation and integration.

Nvidia’s release of Nemotron-Nano-9B-v2 showcase a continued focus on efficiency and controllable reasoning in language models.

By combining hybrid architectures with new compression and training techniques, the company is offering developers tools that seek to maintain accuracy while reducing costs and latency.

Daily insights on business use cases with VB Daily

If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.

Read our Privacy Policy

Thanks for subscribing. Check out more VB newsletters here.

An error occured.



Source_link

Related Posts

The best Amazon deals on Kindles, Echo speakers, Fire TV devices and more for Prime Day
Technology And Software

The best Amazon deals on Kindles, Echo speakers, Fire TV devices and more for Prime Day

October 8, 2025
Technology And Software

Prime Day 2025 – We’re Tracking Deals Live

October 8, 2025
You can’t libel the dead. But that doesn’t mean you should deepfake them.
Technology And Software

You can’t libel the dead. But that doesn’t mean you should deepfake them.

October 8, 2025
How to Protect Virtualized and Containerized Environments?
Technology And Software

How to Protect Virtualized and Containerized Environments?

October 7, 2025
The best Prime Day kitchen deals include up to 50 percent off our favorite air fryers and more
Technology And Software

The best Prime Day kitchen deals include up to 50 percent off our favorite air fryers and more

October 7, 2025
Jony Ive Says He Wants His OpenAI Devices to ‘Make Us Happy’
Technology And Software

Jony Ive Says He Wants His OpenAI Devices to ‘Make Us Happy’

October 7, 2025
Next Post
What Is Bounce Rate? And How to Reduce It

What Is Bounce Rate? And How to Reduce It

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025

EDITOR'S PICK

How to Choose the Right Gaming Laptop (2025): What You Need to Know

How to Choose the Right Gaming Laptop (2025): What You Need to Know

September 28, 2025
How to Do Digital Marketing Competitor Analysis [2024]

How to Do Digital Marketing Competitor Analysis [2024]

June 24, 2025
A Complete Guide to App Development- iOS vs Android

A Complete Guide to App Development- iOS vs Android

August 4, 2025
9 Best AI Summarizer Tools for Articles and Documents

9 Best AI Summarizer Tools for Articles and Documents

June 7, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • How to Know if Your SEO Agency Can Help You with AEO
  • 10 Real-World Use Cases & Benefits
  • Big Tech is ‘donating’ to Trump’s ‘nonprofits’ 
  • How does the TikTok algorithm work in 2025? Tips to boost visibility
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?