• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Friday, January 23, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

How to Create a Bioinformatics AI Agent Using Biopython for DNA and Protein Analysis

Josh by Josh
September 8, 2025
in Al, Analytics and Automation
0
How to Create a Bioinformatics AI Agent Using Biopython for DNA and Protein Analysis
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


class BioPythonAIAgent:
   def __init__(self, email="[email protected]"):
       self.email = email
       Entrez.email = email
       self.sequences = {}
       self.analysis_results = {}
       self.alignments = {}
       self.trees = {}
  
   def fetch_sequence_from_ncbi(self, accession_id, db="nucleotide", rettype="fasta"):
       try:
           handle = Entrez.efetch(db=db, id=accession_id, rettype=rettype, retmode="text")
           record = SeqIO.read(handle, "fasta")
           handle.close()
           self.sequences[accession_id] = record
           return record
       except Exception as e:
           print(f"Error fetching sequence: {str(e)}")
           return None
  
   def create_sample_sequences(self):
       covid_spike = "MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT"
      
       human_insulin = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
      
       e_coli_16s = "AAATTGAAGAGTTTGATCATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAACGGTAACAGGAAGCAGCTTGCTGCTTTGCTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAATGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGCGTTAAGGTTAATAACCTTGGCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTTGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACA"
      
       sample_sequences = [
           ("COVID_Spike", covid_spike, "SARS-CoV-2 Spike Protein"),
           ("Human_Insulin", human_insulin, "Human Insulin Precursor"),
           ("E_coli_16S", e_coli_16s, "E. coli 16S rRNA")
       ]
      
       for seq_id, seq_str, desc in sample_sequences:
           record = SeqRecord(Seq(seq_str), id=seq_id, description=desc)
           self.sequences[seq_id] = record
      
       return sample_sequences
  
   def analyze_sequence(self, sequence_id=None, sequence=None):
       if sequence_id and sequence_id in self.sequences:
           seq_record = self.sequences[sequence_id]
           seq = seq_record.seq
           description = seq_record.description
       elif sequence:
           seq = Seq(sequence)
           description = "Custom sequence"
       else:
           return None
      
       analysis = {
           'length': len(seq),
           'composition': {}
       }
      
       for base in ['A', 'T', 'G', 'C']:
           analysis['composition'][base] = seq.count(base)
      
       if 'A' in analysis['composition'] and 'T' in analysis['composition']:
           analysis['gc_content'] = round(gc_fraction(seq) * 100, 2)
           try:
               analysis['molecular_weight'] = round(molecular_weight(seq, seq_type="DNA"), 2)
           except:
               analysis['molecular_weight'] = len(seq) * 650
      
       try:
           if len(seq) % 3 == 0:
               protein = seq.translate()
               analysis['translation'] = str(protein)
               analysis['stop_codons'] = protein.count('*')
              
               if '*' not in str(protein)[:-1]:
                   prot_analysis = ProteinAnalysis(str(protein)[:-1])
                   analysis['protein_mw'] = round(prot_analysis.molecular_weight(), 2)
                   analysis['isoelectric_point'] = round(prot_analysis.isoelectric_point(), 2)
                   analysis['protein_composition'] = prot_analysis.get_amino_acids_percent()
       except:
           pass
      
       key = sequence_id if sequence_id else "custom"
       self.analysis_results[key] = analysis
      
       return analysis
  
   def visualize_composition(self, sequence_id):
       if sequence_id not in self.analysis_results:
           return
      
       analysis = self.analysis_results[sequence_id]
      
       fig = make_subplots(
           rows=2, cols=2,
           specs=[[{"type": "pie"}, {"type": "bar"}],
                  [{"colspan": 2}, None]],
           subplot_titles=("Nucleotide Composition", "Base Count", "Sequence Properties")
       )
      
       labels = list(analysis['composition'].keys())
       values = list(analysis['composition'].values())
      
       fig.add_trace(
           go.Pie(labels=labels, values=values, name="Composition"),
           row=1, col=1
       )
      
       fig.add_trace(
           go.Bar(x=labels, y=values, name="Count", marker_color=['red', 'blue', 'green', 'orange']),
           row=1, col=2
       )
      
       properties = ['Length', 'GC%', 'MW (kDa)']
       prop_values = [
           analysis['length'],
           analysis.get('gc_content', 0),
           analysis.get('molecular_weight', 0) / 1000
       ]
      
       fig.add_trace(
           go.Scatter(x=properties, y=prop_values, mode="markers+lines",
                     marker=dict(size=10, color="purple"), name="Properties"),
           row=2, col=1
       )
      
       fig.update_layout(
           title=f"Comprehensive Analysis: {sequence_id}",
           showlegend=False,
           height=600
       )
      
       fig.show()
  
   def perform_multiple_sequence_alignment(self, sequence_ids):
       if len(sequence_ids) < 2:
           return None
      
       sequences = []
       for seq_id in sequence_ids:
           if seq_id in self.sequences:
               sequences.append(self.sequences[seq_id])
      
       if len(sequences) < 2:
           return None
      
       from Bio.Align import PairwiseAligner
       aligner = PairwiseAligner()
       aligner.match_score = 2
       aligner.mismatch_score = -1
       aligner.open_gap_score = -2
       aligner.extend_gap_score = -0.5
      
       alignments = []
       for i in range(len(sequences)):
           for j in range(i+1, len(sequences)):
               alignment = aligner.align(sequences[i].seq, sequences[j].seq)[0]
               alignments.append(alignment)
      
       return alignments
  
   def create_phylogenetic_tree(self, alignment_key=None, sequences=None):
       if alignment_key and alignment_key in self.alignments:
           alignment = self.alignments[alignment_key]
       elif sequences:
           records = []
           for i, seq in enumerate(sequences):
               record = SeqRecord(Seq(seq), id=f"seq_{i}")
               records.append(record)
           SeqIO.write(records, "temp.fasta", "fasta")
          
           try:
               clustalw_cline = ClustalwCommandline("clustalw2", infile="temp.fasta")
               stdout, stderr = clustalw_cline()
               alignment = AlignIO.read("temp.aln", "clustal")
               os.remove("temp.fasta")
               os.remove("temp.aln")
               os.remove("temp.dnd")
           except:
               return None
       else:
           return None
      
       calculator = DistanceCalculator('identity')
       dm = calculator.get_distance(alignment)
      
       constructor = DistanceTreeConstructor()
       tree = constructor.upgma(dm)
      
       tree_key = f"tree_{len(self.trees)}"
       self.trees[tree_key] = tree
      
       return tree
  
   def visualize_tree(self, tree):
       fig, ax = plt.subplots(figsize=(10, 6))
       Phylo.draw(tree, axes=ax)
       plt.title("Phylogenetic Tree")
       plt.tight_layout()
       plt.show()
  
   def protein_structure_analysis(self, sequence_id):
       if sequence_id not in self.sequences:
           return None
      
       seq = self.sequences[sequence_id].seq
      
       try:
           if len(seq) % 3 == 0:
               protein = seq.translate()
               if '*' not in str(protein)[:-1]:
                   prot_analysis = ProteinAnalysis(str(protein)[:-1])
                  
                   structure_analysis = {
                       'molecular_weight': prot_analysis.molecular_weight(),
                       'isoelectric_point': prot_analysis.isoelectric_point(),
                       'amino_acid_percent': prot_analysis.get_amino_acids_percent(),
                       'secondary_structure': prot_analysis.secondary_structure_fraction(),
                       'flexibility': prot_analysis.flexibility(),
                       'gravy': prot_analysis.gravy()
                   }
                  
                   return structure_analysis
       except:
           pass
      
       return None
  
   def comparative_analysis(self, sequence_ids):
       results = []
      
       for seq_id in sequence_ids:
           if seq_id in self.analysis_results:
               analysis = self.analysis_results[seq_id].copy()
               analysis['sequence_id'] = seq_id
               results.append(analysis)
      
       df = pd.DataFrame(results)
      
       if len(df) > 1:
           fig = make_subplots(
               rows=2, cols=2,
               subplot_titles=("Length Comparison", "GC Content", "Molecular Weight", "Composition Heatmap")
           )
          
           fig.add_trace(
               go.Bar(x=df['sequence_id'], y=df['length'], name="Length"),
               row=1, col=1
           )
          
           if 'gc_content' in df.columns:
               fig.add_trace(
                   go.Scatter(x=df['sequence_id'], y=df['gc_content'], mode="markers+lines", name="GC%"),
                   row=1, col=2
               )
          
           if 'molecular_weight' in df.columns:
               fig.add_trace(
                   go.Bar(x=df['sequence_id'], y=df['molecular_weight'], name="MW"),
                   row=2, col=1
               )
          
           fig.update_layout(title="Comparative Sequence Analysis", height=600)
           fig.show()
      
       return df
  
   def codon_usage_analysis(self, sequence_id):
       if sequence_id not in self.sequences:
           return None
      
       seq = self.sequences[sequence_id].seq
      
       if len(seq) % 3 != 0:
           return None
      
       codons = {}
       for i in range(0, len(seq) - 2, 3):
           codon = str(seq[i:i+3])
           codons[codon] = codons.get(codon, 0) + 1
      
       codon_df = pd.DataFrame(list(codons.items()), columns=['Codon', 'Count'])
       codon_df = codon_df.sort_values('Count', ascending=False)
      
       fig = px.bar(codon_df.head(20), x='Codon', y='Count',
                    title=f"Top 20 Codon Usage - {sequence_id}")
       fig.show()
      
       return codon_df
  
   def motif_search(self, sequence_id, motif_pattern):
       if sequence_id not in self.sequences:
           return []
      
       seq = str(self.sequences[sequence_id].seq)
       positions = []
      
       for i in range(len(seq) - len(motif_pattern) + 1):
           if seq[i:i+len(motif_pattern)] == motif_pattern:
               positions.append(i)
      
       return positions
  
   def gc_content_window(self, sequence_id, window_size=100):
       if sequence_id not in self.sequences:
           return None
      
       seq = self.sequences[sequence_id].seq
       gc_values = []
       positions = []
      
       for i in range(0, len(seq) - window_size + 1, window_size//4):
           window = seq[i:i+window_size]
           gc_values.append(gc_fraction(window) * 100)
           positions.append(i + window_size//2)
      
       fig = go.Figure()
       fig.add_trace(go.Scatter(x=positions, y=gc_values, mode="lines+markers",
                               name=f'GC Content (window={window_size})'))
       fig.update_layout(
           title=f"GC Content Sliding Window Analysis - {sequence_id}",
           xaxis_title="Position",
           yaxis_title="GC Content (%)"
       )
       fig.show()
      
       return positions, gc_values
  
   def run_comprehensive_analysis(self, sequence_ids):
       results = {}
      
       for seq_id in sequence_ids:
           if seq_id in self.sequences:
               analysis = self.analyze_sequence(seq_id)
               self.visualize_composition(seq_id)
              
               gc_analysis = self.gc_content_window(seq_id)
               codon_analysis = self.codon_usage_analysis(seq_id)
              
               results[seq_id] = {
                   'basic_analysis': analysis,
                   'gc_window': gc_analysis,
                   'codon_usage': codon_analysis
               }
      
       if len(sequence_ids) > 1:
           comparative_df = self.comparative_analysis(sequence_ids)
           results['comparative'] = comparative_df
      
       return results



Source_link

READ ALSO

Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future

Related Posts

Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass
Al, Analytics and Automation

Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass

January 23, 2026
Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future
Al, Analytics and Automation

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future

January 22, 2026
Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents
Al, Analytics and Automation

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents

January 22, 2026
FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
Al, Analytics and Automation

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

January 22, 2026
Al, Analytics and Automation

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

January 21, 2026
Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News
Al, Analytics and Automation

Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

January 21, 2026
Next Post
How to Add WIRED as a Preferred Source on Google (2025)

How to Add WIRED as a Preferred Source on Google (2025)

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

MarTech essential digital marketing tools [Infographic]

MarTech essential digital marketing tools [Infographic]

August 13, 2025
A Guide for Marketing Shade Solutions on Social Media Channels

A Guide for Marketing Shade Solutions on Social Media Channels

July 19, 2025
Know Your Customer: The CEO

Know Your Customer: The CEO

November 19, 2025
Pricing Overview and Feature Breakdown

Pricing Overview and Feature Breakdown

January 17, 2026

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • How I Got AI to Quote Us with 4 Simple Strategies
  • List of Spin a Baddie Codes
  • Sennheiser introduces new TV headphones bundle with Auracast
  • Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?