• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, January 22, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

How to Build a Safe, Autonomous Prior Authorization Agent for Healthcare Revenue Cycle Management with Human-in-the-Loop Controls

Josh by Josh
January 16, 2026
in Al, Analytics and Automation
0
0
SHARES
2
VIEWS
Share on FacebookShare on Twitter


def _now_iso() -> str:
   return datetime.utcnow().replace(microsecond=0).isoformat() + "Z"


def _stable_id(prefix: str, seed: str) -> str:
   h = hashlib.sha256(seed.encode("utf-8")).hexdigest()[:10]
   return f"{prefix}_{h}"


class MockEHR:
   def __init__(self):
       self.orders_queue: List[SurgeryOrder] = []
       self.patient_docs: Dict[str, List[ClinicalDocument]] = {}


   def seed_data(self, n_orders: int = 5):
       random.seed(7)


       def make_patient(i: int) -> Patient:
           pid = f"PT{i:04d}"
           plan = random.choice(list(InsurancePlan))
           return Patient(
               patient_id=pid,
               name=f"Patient {i}",
               dob="1980-01-01",
               member_id=f"M{i:08d}",
               plan=plan,
           )


       def docs_for_order(patient: Patient, surgery: SurgeryType) -> List[ClinicalDocument]:
           base = [
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient.patient_id + "H&P"),
                   doc_type=DocType.H_AND_P,
                   created_at=_now_iso(),
                   content="H&P: Relevant history, exam findings, and surgical indication.",
                   source="EHR",
               ),
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient.patient_id + "NOTE"),
                   doc_type=DocType.CLINICAL_NOTE,
                   created_at=_now_iso(),
                   content="Clinical note: Symptoms, conservative management attempted, clinician assessment.",
                   source="EHR",
               ),
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient.patient_id + "MEDS"),
                   doc_type=DocType.MED_LIST,
                   created_at=_now_iso(),
                   content="Medication list: Current meds, allergies, contraindications.",
                   source="EHR",
               ),
           ]


           maybe = []
           if surgery in [SurgeryType.KNEE_ARTHROPLASTY, SurgeryType.SPINE_FUSION, SurgeryType.BARIATRIC]:
               maybe.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", patient.patient_id + "LABS"),
                       doc_type=DocType.LABS,
                       created_at=_now_iso(),
                       content="Labs: CBC/CMP within last 30 days.",
                       source="LabSystem",
                   )
               )


           if surgery in [SurgeryType.SPINE_FUSION, SurgeryType.KNEE_ARTHROPLASTY]:
               maybe.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", patient.patient_id + "IMG"),
                       doc_type=DocType.IMAGING,
                       created_at=_now_iso(),
                       content="Imaging: MRI/X-ray report supporting diagnosis and severity.",
                       source="Radiology",
                   )
               )


           final = base + [d for d in maybe if random.random() > 0.35]


           if random.random() > 0.6:
               final.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", patient.patient_id + "PRIOR_TX"),
                       doc_type=DocType.PRIOR_TX,
                       created_at=_now_iso(),
                       content="Prior treatments: PT, meds, injections tried over 6+ weeks.",
                       source="EHR",
                   )
               )


           if random.random() > 0.5:
               final.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", patient.patient_id + "CONSENT"),
                       doc_type=DocType.CONSENT,
                       created_at=_now_iso(),
                       content="Consent: Signed procedure consent and risk disclosure.",
                       source="EHR",
                   )
               )


           return final


       for i in range(1, n_orders + 1):
           patient = make_patient(i)
           surgery = random.choice(list(SurgeryType))
           order = SurgeryOrder(
               order_id=_stable_id("ORD", patient.patient_id + surgery.value),
               patient=patient,
               surgery_type=surgery,
               scheduled_date=(datetime.utcnow().date() + timedelta(days=random.randint(3, 21))).isoformat(),
               ordering_provider_npi=str(random.randint(1000000000, 1999999999)),
               diagnosis_codes=["M17.11", "M54.5"] if surgery != SurgeryType.CATARACT else ["H25.9"],
               created_at=_now_iso(),
           )
           self.orders_queue.append(order)
           self.patient_docs[patient.patient_id] = docs_for_order(patient, surgery)


   def poll_new_surgery_orders(self, max_n: int = 1) -> List[SurgeryOrder]:
       pulled = self.orders_queue[:max_n]
       self.orders_queue = self.orders_queue[max_n:]
       return pulled


   def get_patient_documents(self, patient_id: str) -> List[ClinicalDocument]:
       return list(self.patient_docs.get(patient_id, []))


   def fetch_additional_docs(self, patient_id: str, needed: List[DocType]) -> List[ClinicalDocument]:
       generated = []
       for dt in needed:
           generated.append(
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient_id + dt.value + str(time.time())),
                   doc_type=dt,
                   created_at=_now_iso(),
                   content=f"Auto-collected document for {dt.value}: extracted and formatted per payer policy.",
                   source="AutoCollector",
               )
           )
       self.patient_docs.setdefault(patient_id, []).extend(generated)
       return generated


class MockPayerPortal:
   def __init__(self):
       self.db: Dict[str, Dict[str, Any]] = {}
       random.seed(11)


   def required_docs_policy(self, plan: InsurancePlan, surgery: SurgeryType) -> List[DocType]:
       base = [DocType.H_AND_P, DocType.CLINICAL_NOTE, DocType.MED_LIST]
       if surgery in [SurgeryType.SPINE_FUSION, SurgeryType.KNEE_ARTHROPLASTY]:
           base += [DocType.IMAGING, DocType.LABS, DocType.PRIOR_TX]
       if surgery == SurgeryType.BARIATRIC:
           base += [DocType.LABS, DocType.PRIOR_TX]
       if plan in [InsurancePlan.PAYER_BETA, InsurancePlan.PAYER_GAMMA]:
           base += [DocType.CONSENT]
       return sorted(list(set(base)), key=lambda x: x.value)


   def submit(self, pa: PriorAuthRequest) -> PayerResponse:
       payer_ref = _stable_id("PAYREF", pa.request_id + _now_iso())
       docs_present = {d.doc_type for d in pa.docs_attached}
       required = self.required_docs_policy(pa.order.patient.plan, pa.order.surgery_type)
       missing = [d for d in required if d not in docs_present]


       self.db[payer_ref] = {
           "status": AuthStatus.SUBMITTED,
           "order_id": pa.order.order_id,
           "plan": pa.order.patient.plan,
           "surgery": pa.order.surgery_type,
           "missing": missing,
           "polls": 0,
           "submitted_at": _now_iso(),
           "denial_reason": None,
       }


       msg = "Submission received. Case queued for review."
       if missing:
           msg += " Initial validation indicates incomplete documentation."
       return PayerResponse(status=AuthStatus.SUBMITTED, payer_ref=payer_ref, message=msg)


   def check_status(self, payer_ref: str) -> PayerResponse:
       if payer_ref not in self.db:
           return PayerResponse(
               status=AuthStatus.DENIED,
               payer_ref=payer_ref,
               message="Case not found (possible payer system error).",
               denial_reason=DenialReason.OTHER,
               confidence=0.4,
           )


       case = self.db[payer_ref]
       case["polls"] += 1


       if case["status"] == AuthStatus.SUBMITTED and case["polls"] >= 1:
           case["status"] = AuthStatus.IN_REVIEW


       if case["status"] == AuthStatus.IN_REVIEW and case["polls"] >= 3:
           if case["missing"]:
               case["status"] = AuthStatus.DENIED
               case["denial_reason"] = DenialReason.MISSING_DOCS
           else:
               roll = random.random()
               if roll < 0.10:
                   case["status"] = AuthStatus.DENIED
                   case["denial_reason"] = DenialReason.CODING_ISSUE
               elif roll < 0.18:
                   case["status"] = AuthStatus.DENIED
                   case["denial_reason"] = DenialReason.MEDICAL_NECESSITY
               else:
                   case["status"] = AuthStatus.APPROVED


       if case["status"] == AuthStatus.DENIED:
           dr = case["denial_reason"] or DenialReason.OTHER
           missing = case["missing"] if dr == DenialReason.MISSING_DOCS else []
           conf = 0.9 if dr != DenialReason.OTHER else 0.55
           return PayerResponse(
               status=AuthStatus.DENIED,
               payer_ref=payer_ref,
               message=f"Denied. Reason={dr.value}.",
               denial_reason=dr,
               missing_docs=missing,
               confidence=conf,
           )


       if case["status"] == AuthStatus.APPROVED:
           return PayerResponse(
               status=AuthStatus.APPROVED,
               payer_ref=payer_ref,
               message="Approved. Authorization issued.",
               confidence=0.95,
           )


       return PayerResponse(
           status=case["status"],
           payer_ref=payer_ref,
           message=f"Status={case['status'].value}. Polls={case['polls']}.",
           confidence=0.9,
       )


   def file_appeal(self, payer_ref: str, appeal_text: str, attached_docs: List[ClinicalDocument]) -> PayerResponse:
       if payer_ref not in self.db:
           return PayerResponse(
               status=AuthStatus.DENIED,
               payer_ref=payer_ref,
               message="Appeal failed: case not found.",
               denial_reason=DenialReason.OTHER,
               confidence=0.4,
           )


       case = self.db[payer_ref]
       docs_present = {d.doc_type for d in attached_docs}
       still_missing = [d for d in case["missing"] if d not in docs_present]
       case["missing"] = still_missing
       case["status"] = AuthStatus.APPEALED
       case["polls"] = 0


       msg = "Appeal submitted and queued for review."
       if still_missing:
           msg += f" Warning: still missing {', '.join([d.value for d in still_missing])}."
       return PayerResponse(status=AuthStatus.APPEALED, payer_ref=payer_ref, message=msg, confidence=0.9)



Source_link

READ ALSO

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

Related Posts

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
Al, Analytics and Automation

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

January 22, 2026
Al, Analytics and Automation

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

January 21, 2026
Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News
Al, Analytics and Automation

Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

January 21, 2026
What are Context Graphs? – MarkTechPost
Al, Analytics and Automation

What are Context Graphs? – MarkTechPost

January 21, 2026
IVO’s $55M Boost Signals AI-Driven Law Future (and It’s Just Getting Started)
Al, Analytics and Automation

IVO’s $55M Boost Signals AI-Driven Law Future (and It’s Just Getting Started)

January 20, 2026
How to Design a Fully Streaming Voice Agent with End-to-End Latency Budgets, Incremental ASR, LLM Streaming, and Real-Time TTS
Al, Analytics and Automation

How to Design a Fully Streaming Voice Agent with End-to-End Latency Budgets, Incremental ASR, LLM Streaming, and Real-Time TTS

January 20, 2026
Next Post
Anthropic taps former Microsoft India MD to lead Bengaluru expansion

Anthropic taps former Microsoft India MD to lead Bengaluru expansion

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

Up to 88 percent off ProtonVPN, Surfshark, ExpressVPN, NordVPN and more

Up to 88 percent off ProtonVPN, Surfshark, ExpressVPN, NordVPN and more

January 2, 2026
35 Best Family Board Games (2025): Catan, Ticket to Ride, Codenames

35 Best Family Board Games (2025): Catan, Ticket to Ride, Codenames

November 1, 2025
Decoding India’s Festive Season 2025: Consumers, Celebrations, and Commerce

Decoding India’s Festive Season 2025: Consumers, Celebrations, and Commerce

August 29, 2025
Clay confirms it closed $100M round at $3.1B valuation

Clay confirms it closed $100M round at $3.1B valuation

August 6, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Why CEOs and CHROs Are Turning to Louis Carter to Engineer the Workplaces of the Future
  • What Type of Mattress Is Right for You? (2026)
  • FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
  • Insights on Marketing Automation in 2026
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?