• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Saturday, July 12, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Robotic probe quickly measures key properties of new materials | MIT News

Josh by Josh
July 5, 2025
in Al, Analytics and Automation
0
Robotic probe quickly measures key properties of new materials | MIT News
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter



Scientists are striving to discover new semiconductor materials that could boost the efficiency of solar cells and other electronics. But the pace of innovation is bottlenecked by the speed at which researchers can manually measure important material properties.

A fully autonomous robotic system developed by MIT researchers could speed things up.

Their system utilizes a robotic probe to measure an important electrical property known as photoconductance, which is how electrically responsive a material is to the presence of light.

The researchers inject materials-science-domain knowledge from human experts into the machine-learning model that guides the robot’s decision making. This enables the robot to identify the best places to contact a material with the probe to gain the most information about its photoconductance, while a specialized planning procedure finds the fastest way to move between contact points.

During a 24-hour test, the fully autonomous robotic probe took more than 125 unique measurements per hour, with more precision and reliability than other artificial intelligence-based methods.

By dramatically increasing the speed at which scientists can characterize important properties of new semiconductor materials, this method could spur the development of solar panels that produce more electricity.

“I find this paper to be incredibly exciting because it provides a pathway for autonomous, contact-based characterization methods. Not every important property of a material can be measured in a contactless way. If you need to make contact with your sample, you want it to be fast and you want to maximize the amount of information that you gain,” says Tonio Buonassisi, professor of mechanical engineering and senior author of a paper on the autonomous system.

His co-authors include lead author Alexander (Aleks) Siemenn, a graduate student; postdocs Basita Das and Kangyu Ji; and graduate student Fang Sheng. The work appears today in Science Advances.

Making contact

Since 2018, researchers in Buonassisi’s laboratory have been working toward a fully autonomous materials discovery laboratory. They’ve recently focused on discovering new perovskites, which are a class of semiconductor materials used in photovoltaics like solar panels.

In prior work, they developed techniques to rapidly synthesize and print unique combinations of perovskite material. They also designed imaging-based methods to determine some important material properties.

But photoconductance is most accurately characterized by placing a probe onto the material, shining a light, and measuring the electrical response.

“To allow our experimental laboratory to operate as quickly and accurately as possible, we had to come up with a solution that would produce the best measurements while minimizing the time it takes to run the whole procedure,” says Siemenn.

Doing so required the integration of machine learning, robotics, and material science into one autonomous system.

To begin, the robotic system uses its onboard camera to take an image of a slide with perovskite material printed on it.

Then it uses computer vision to cut that image into segments, which are fed into a neural network model that has been specially designed to incorporate domain expertise from chemists and materials scientists.

“These robots can improve the repeatability and precision of our operations, but it is important to still have a human in the loop. If we don’t have a good way to implement the rich knowledge from these chemical experts into our robots, we are not going to be able to discover new materials,” Siemenn adds.

The model uses this domain knowledge to determine the optimal points for the probe to contact based on the shape of the sample and its material composition. These contact points are fed into a path planner that finds the most efficient way for the probe to reach all points.

The adaptability of this machine-learning approach is especially important because the printed samples have unique shapes, from circular drops to jellybean-like structures.

“It is almost like measuring snowflakes — it is difficult to get two that are identical,” Buonassisi says.

Once the path planner finds the shortest path, it sends signals to the robot’s motors, which manipulate the probe and take measurements at each contact point in rapid succession.

Key to the speed of this approach is the self-supervised nature of the neural network model. The model determines optimal contact points directly on a sample image — without the need for labeled training data.

The researchers also accelerated the system by enhancing the path planning procedure. They found that adding a small amount of noise, or randomness, to the algorithm helped it find the shortest path.

“As we progress in this age of autonomous labs, you really do need all three of these expertise — hardware building, software, and an understanding of materials science — coming together into the same team to be able to innovate quickly. And that is part of the secret sauce here,” Buonassisi says.

Rich data, rapid results

Once they had built the system from the ground up, the researchers tested each component. Their results showed that the neural network model found better contact points with less computation time than seven other AI-based methods. In addition, the path planning algorithm consistently found shorter path plans than other methods.

When they put all the pieces together to conduct a 24-hour fully autonomous experiment, the robotic system conducted more than 3,000 unique photoconductance measurements at a rate exceeding 125 per hour.

In addition, the level of detail provided by this precise measurement approach enabled the researchers to identify hotspots with higher photoconductance as well as areas of material degradation.

“Being able to gather such rich data that can be captured at such fast rates, without the need for human guidance, starts to open up doors to be able to discover and develop new high-performance semiconductors, especially for sustainability applications like solar panels,” Siemenn says.

The researchers want to continue building on this robotic system as they strive to create a fully autonomous lab for materials discovery.

This work is supported, in part, by First Solar, Eni through the MIT Energy Initiative, MathWorks, the University of Toronto’s Acceleration Consortium, the U.S. Department of Energy, and the U.S. National Science Foundation.



Source_link

READ ALSO

New AI system uncovers hidden cell subtypes, boosts precision medicine | MIT News

From Perception to Action: The Role of World Models in Embodied AI Systems

Related Posts

New AI system uncovers hidden cell subtypes, boosts precision medicine | MIT News
Al, Analytics and Automation

New AI system uncovers hidden cell subtypes, boosts precision medicine | MIT News

July 12, 2025
From Perception to Action: The Role of World Models in Embodied AI Systems
Al, Analytics and Automation

From Perception to Action: The Role of World Models in Embodied AI Systems

July 12, 2025
Mistral AI Releases Devstral 2507 for Code-Centric Language Modeling
Al, Analytics and Automation

Mistral AI Releases Devstral 2507 for Code-Centric Language Modeling

July 11, 2025
Medical Image Annotation and Labeling Services Guide 2025
Al, Analytics and Automation

Medical Image Annotation and Labeling Services Guide 2025

July 11, 2025
AI shapes autonomous underwater “gliders” | MIT News
Al, Analytics and Automation

AI shapes autonomous underwater “gliders” | MIT News

July 11, 2025
NVIDIA AI Released DiffusionRenderer: An AI Model for Editable, Photorealistic 3D Scenes from a Single Video
Al, Analytics and Automation

NVIDIA AI Released DiffusionRenderer: An AI Model for Editable, Photorealistic 3D Scenes from a Single Video

July 10, 2025
Next Post
GM’s Cruise Cars Are Back on the Road in Three US States—But Not for Ride-Hailing

GM’s Cruise Cars Are Back on the Road in Three US States—But Not for Ride-Hailing

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Eating Bugs – MetaDevo

Eating Bugs – MetaDevo

May 29, 2025
Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

May 30, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025

EDITOR'S PICK

The Rise of AI Girlfriends You Don’t Have to Sign Up For

The Rise of AI Girlfriends You Don’t Have to Sign Up For

June 8, 2025
Build a HelloFresh Clone App

Build a HelloFresh Clone App

June 9, 2025
How to use Gemini on a Wear OS smartwatch

How to use Gemini on a Wear OS smartwatch

July 10, 2025
The Best Agency Leaders Don’t Have All the Answers

The Best Agency Leaders Don’t Have All the Answers

June 11, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • New AI system uncovers hidden cell subtypes, boosts precision medicine | MIT News
  • Sonic’s CMO Talks Tapping into the X Games Fanbase
  • What in the World Is API, and How Do I Use It?
  • The Scoop: ‘Tiny Chef’ viral video shows importance of new content streams
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?