• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Sunday, August 24, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis

Josh by Josh
June 29, 2025
in Al, Analytics and Automation
0
Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


class IntelligentDataAnalyzer(BaseTool):
   name: str = "intelligent_data_analyzer"
   description: str = "Advanced data analysis tool that performs statistical analysis, machine learning clustering, outlier detection, correlation analysis, and generates visualizations with actionable insights."
   args_schema: type[BaseModel] = DataAnalysisInput
   response_format: str = "content_and_artifact"
  
   def _run(self, data: List[Dict], analysis_type: str = "comprehensive", target_column: Optional[str] = None, max_clusters: int = 5) -> Tuple[str, Dict]:
       try:
           df = pd.DataFrame(data)
           if df.empty:
               raise ToolException("Dataset is empty")
          
           insights = {"dataset_info": self._get_dataset_info(df)}
          
           if analysis_type in ["comprehensive", "correlation"]:
               insights["correlation_analysis"] = self._correlation_analysis(df)
           if analysis_type in ["comprehensive", "clustering"]:
               insights["clustering_analysis"] = self._clustering_analysis(df, max_clusters)
           if analysis_type in ["comprehensive", "outlier"]:
               insights["outlier_detection"] = self._outlier_detection(df)
          
           if target_column and target_column in df.columns:
               insights["target_analysis"] = self._target_analysis(df, target_column)
          
           recommendations = self._generate_recommendations(df, insights)
           summary = self._create_analysis_summary(insights, recommendations)
          
           artifact = {
               "insights": insights,
               "recommendations": recommendations,
               "data_shape": df.shape,
               "analysis_type": analysis_type,
               "numeric_columns": df.select_dtypes(include=[np.number]).columns.tolist(),
               "categorical_columns": df.select_dtypes(include=['object']).columns.tolist()
           }
          
           return summary, artifact
          
       except Exception as e:
           raise ToolException(f"Analysis failed: {str(e)}")
  
   def _get_dataset_info(self, df: pd.DataFrame) -> Dict:
       return {
           "shape": df.shape,
           "columns": df.columns.tolist(),
           "dtypes": df.dtypes.astype(str).to_dict(),
           "missing_values": df.isnull().sum().to_dict(),
           "memory_usage": df.memory_usage(deep=True).sum()
       }
  
   def _correlation_analysis(self, df: pd.DataFrame) -> Dict:
       numeric_df = df.select_dtypes(include=[np.number])
       if numeric_df.empty:
           return {"message": "No numeric columns for correlation analysis"}
      
       corr_matrix = numeric_df.corr()
       strong_corr = []
       for i in range(len(corr_matrix.columns)):
           for j in range(i+1, len(corr_matrix.columns)):
               corr_val = corr_matrix.iloc[i, j]
               if abs(corr_val) > 0.7:
                   strong_corr.append({"var1": corr_matrix.columns[i], "var2": corr_matrix.columns[j], "correlation": round(corr_val, 3)})
      
       return {
           "correlation_matrix": corr_matrix.round(3).to_dict(),
           "strong_correlations": strong_corr,
           "avg_correlation": round(corr_matrix.values[np.triu_indices_from(corr_matrix.values, k=1)].mean(), 3)
       }
  
   def _clustering_analysis(self, df: pd.DataFrame, max_clusters: int) -> Dict:
       numeric_df = df.select_dtypes(include=[np.number]).dropna()
       if numeric_df.shape[0] < 2 or numeric_df.shape[1] < 2:
           return {"message": "Insufficient numeric data for clustering"}
      
       scaler = StandardScaler()
       scaled_data = scaler.fit_transform(numeric_df)
      
       inertias = []
       K_range = range(1, min(max_clusters + 1, len(numeric_df) // 2 + 1))
      
       for k in K_range:
           kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
           kmeans.fit(scaled_data)
           inertias.append(kmeans.inertia_)
      
       optimal_k = self._find_elbow_point(inertias, K_range)
       kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
       cluster_labels = kmeans.fit_predict(scaled_data)
      
       cluster_stats = {}
       for i in range(optimal_k):
           cluster_data = numeric_df[cluster_labels == i]
           cluster_stats[f"cluster_{i}"] = {
               "size": len(cluster_data),
               "percentage": round(len(cluster_data) / len(numeric_df) * 100, 1),
               "means": cluster_data.mean().round(3).to_dict()
           }
      
       return {
           "optimal_clusters": optimal_k,
           "cluster_stats": cluster_stats,
           "silhouette_score": round(silhouette_score(scaled_data, cluster_labels), 3) if len(set(cluster_labels)) > 1 else 0.0,
           "inertias": inertias
       }
  
   def _outlier_detection(self, df: pd.DataFrame) -> Dict:
       numeric_df = df.select_dtypes(include=[np.number])
       if numeric_df.empty:
           return {"message": "No numeric columns for outlier detection"}
      
       outliers = {}
       for col in numeric_df.columns:
           data = numeric_df[col].dropna()
           Q1, Q3 = data.quantile(0.25), data.quantile(0.75)
           IQR = Q3 - Q1
           iqr_outliers = data[(data < Q1 - 1.5 * IQR) | (data > Q3 + 1.5 * IQR)]
           z_scores = np.abs((data - data.mean()) / data.std())
           z_outliers = data[z_scores > 3]
          
           outliers[col] = {
               "iqr_outliers": len(iqr_outliers),
               "z_score_outliers": len(z_outliers),
               "outlier_percentage": round(len(iqr_outliers) / len(data) * 100, 2)
           }
      
       return outliers
  
   def _target_analysis(self, df: pd.DataFrame, target_col: str) -> Dict:
       if target_col not in df.columns:
           return {"error": f"Column {target_col} not found"}
      
       target_data = df[target_col].dropna()
      
       if pd.api.types.is_numeric_dtype(target_data):
           return {
               "type": "numeric",
               "stats": {
                   "mean": round(target_data.mean(), 3),
                   "median": round(target_data.median(), 3),
                   "std": round(target_data.std(), 3),
                   "skewness": round(target_data.skew(), 3),
                   "kurtosis": round(target_data.kurtosis(), 3)
               },
               "distribution": "normal" if abs(target_data.skew()) < 0.5 else "skewed"
           }
       else:
           value_counts = target_data.value_counts()
           return {
               "type": "categorical",
               "unique_values": len(value_counts),
               "most_common": value_counts.head(5).to_dict(),
               "entropy": round(-sum((p := value_counts / len(target_data)) * np.log2(p + 1e-10)), 3)
           }
  
   def _generate_recommendations(self, df: pd.DataFrame, insights: Dict) -> List[str]:
       recommendations = []
      
       missing_pct = sum(insights["dataset_info"]["missing_values"].values()) / (df.shape[0] * df.shape[1]) * 100
       if missing_pct > 10:
           recommendations.append(f"Consider data imputation - {missing_pct:.1f}% missing values detected")
      
       if "correlation_analysis" in insights and insights["correlation_analysis"].get("strong_correlations"):
           recommendations.append("Strong correlations detected - consider feature selection or dimensionality reduction")
      
       if "clustering_analysis" in insights:
           cluster_info = insights["clustering_analysis"]
           if isinstance(cluster_info, dict) and "optimal_clusters" in cluster_info:
               recommendations.append(f"Data segments into {cluster_info['optimal_clusters']} distinct groups - useful for targeted strategies")
      
       if "outlier_detection" in insights:
           high_outlier_cols = [col for col, info in insights["outlier_detection"].items() if isinstance(info, dict) and info.get("outlier_percentage", 0) > 5]
           if high_outlier_cols:
               recommendations.append(f"High outlier percentage in: {', '.join(high_outlier_cols)} - investigate data quality")
      
       return recommendations if recommendations else ["Data appears well-structured with no immediate concerns"]
  
   def _create_analysis_summary(self, insights: Dict, recommendations: List[str]) -> str:
       dataset_info = insights["dataset_info"]
       summary = f"""📊 INTELLIGENT DATA ANALYSIS COMPLETE


Dataset Overview: {dataset_info['shape'][0]} rows × {dataset_info['shape'][1]} columns
Numeric Features: {len([c for c, t in dataset_info['dtypes'].items() if 'int' in t or 'float' in t])}
Categorical Features: {len([c for c, t in dataset_info['dtypes'].items() if 'object' in t])}


Key Insights Generated:
• Statistical correlations and relationships identified
• Clustering patterns discovered for segmentation
• Outlier detection completed for data quality assessment
• Feature importance and distribution analysis performed


Top Recommendations:
{chr(10).join('• ' + rec for rec in recommendations[:3])}


Analysis includes ML-powered clustering, statistical correlations, and actionable business insights."""
      
       return summary
  
   def _find_elbow_point(self, inertias: List[float], k_range: range) -> int:
       if len(inertias) < 3:
           return list(k_range)[0]
       diffs = [inertias[i-1] - inertias[i] for i in range(1, len(inertias))]
       return list(k_range)[diffs.index(max(diffs)) + 1] if diffs else list(k_range)[0]



Source_link

READ ALSO

What is a Voice Agent in AI? Top 9 Voice Agent Platforms to Know (2025)

I Tested Mydreamcompanion Video Generator for 1 Month

Related Posts

What is a Voice Agent in AI? Top 9 Voice Agent Platforms to Know (2025)
Al, Analytics and Automation

What is a Voice Agent in AI? Top 9 Voice Agent Platforms to Know (2025)

August 23, 2025
I Tested Mydreamcompanion Video Generator for 1 Month
Al, Analytics and Automation

I Tested Mydreamcompanion Video Generator for 1 Month

August 23, 2025
Google AI Proposes Novel Machine Learning Algorithms for Differentially Private Partition Selection
Al, Analytics and Automation

Google AI Proposes Novel Machine Learning Algorithms for Differentially Private Partition Selection

August 23, 2025
Seeing Images Through the Eyes of Decision Trees
Al, Analytics and Automation

Seeing Images Through the Eyes of Decision Trees

August 23, 2025
Tried an AI Text Humanizer That Passes Copyscape Checker
Al, Analytics and Automation

Tried an AI Text Humanizer That Passes Copyscape Checker

August 22, 2025
Top 10 AI Blogs and News Websites for AI Developers and Engineers in 2025
Al, Analytics and Automation

Top 10 AI Blogs and News Websites for AI Developers and Engineers in 2025

August 22, 2025
Next Post
How AI is Changing LinkedIn Ads Performance Analysis –

How AI is Changing LinkedIn Ads Performance Analysis -

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

June 7, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025

EDITOR'S PICK

31 TikTok Statistics to Know for 2025

31 TikTok Statistics to Know for 2025

July 30, 2025
Don’t Overvalue Attributed Results – Jon Loomer Digital

Don’t Overvalue Attributed Results – Jon Loomer Digital

July 24, 2025
Grow a Garden Warped Mutation Multiplier

Grow a Garden Warped Mutation Multiplier

August 23, 2025
Reddit wants to be a search engine now

Reddit wants to be a search engine now

August 3, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Google’s next big Android update can force dark mode and icon themes
  • How to Rank in Google’s AI Overviews: 7 Pro Tips
  • Broadening the scope of your Marketing Automation platform | Marketing Cube
  • Social Media Strategy Guide: Winning Tactics for Wellness and Fitness Brands
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?