• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, January 22, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

Josh by Josh
January 21, 2026
in Al, Analytics and Automation
0
Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter



MIT researchers have identified significant examples of machine-learning model failure when those models are applied to data other than what they were trained on, raising questions about the need to test whenever a model is deployed in a new setting.

“We demonstrate that even when you train models on large amounts of data, and choose the best average model, in a new setting this ‘best model’ could be the worst model for 6-75 percent of the new data,” says Marzyeh Ghassemi, an associate professor in MIT’s Department of Electrical Engineering and Computer Science (EECS), a member of the Institute for Medical Engineering and Science, and principal investigator at the Laboratory for Information and Decision Systems.

In a paper that was presented at the Neural Information Processing Systems (NeurIPS 2025) conference in December, the researchers point out that models trained to effectively diagnose illness in chest X-rays at one hospital, for example, may be considered effective in a different hospital, on average. The researchers’ performance assessment, however, revealed that some of the best-performing models at the first hospital were the worst-performing on up to 75 percent of patients at the second hospital, even though when all patients are aggregated in the second hospital, high average performance hides this failure.

Their findings demonstrate that although spurious correlations — a simple example of which is when a machine-learning system, not having “seen” many cows pictured at the beach, classifies a photo of a beach-going cow as an orca simply because of its background — are thought to be mitigated by just improving model performance on observed data, they actually still occur and remain a risk to a model’s trustworthiness in new settings. In many instances — including areas examined by the researchers such as chest X-rays, cancer histopathology images, and hate speech detection — such spurious correlations are much harder to detect.

In the case of a medical diagnosis model trained on chest X-rays, for example, the model may have learned to correlate a specific and irrelevant marking on one hospital’s X-rays with a certain pathology. At another hospital where the marking is not used, that pathology could be missed.

Previous research by Ghassemi’s group has shown that models can spuriously correlate such factors as age, gender, and race with medical findings. If, for instance, a model has been trained on more older people’s chest X-rays that have pneumonia and hasn’t “seen” as many X-rays belonging to younger people, it might predict that only older patients have pneumonia.

“We want models to learn how to look at the anatomical features of the patient and then make a decision based on that,” says Olawale Salaudeen, an MIT postdoc and the lead author of the paper, “but really anything that’s in the data that’s correlated with a decision can be used by the model. And those correlations might not actually be robust with changes in the environment, making the model predictions unreliable sources of decision-making.”

Spurious correlations contribute to the risks of biased decision-making. In the NeurIPS conference paper, the researchers showed that, for example, chest X-ray models that improved overall diagnosis performance actually performed worse on patients with pleural conditions or enlarged cardiomediastinum, meaning enlargement of the heart or central chest cavity.

Other authors of the paper included PhD students Haoran Zhang and Kumail Alhamoud, EECS Assistant Professor Sara Beery, and Ghassemi.

While previous work has generally accepted that models ordered best-to-worst by performance will preserve that order when applied in new settings, called accuracy-on-the-line, the researchers were able to demonstrate examples of when the best-performing models in one setting were the worst-performing in another.

Salaudeen devised an algorithm called OODSelect to find examples where accuracy-on-the-line was broken. Basically, he trained thousands of models using in-distribution data, meaning the data were from the first setting, and calculated their accuracy. Then he applied the models to the data from the second setting. When those with the highest accuracy on the first-setting data were wrong when applied to a large percentage of examples in the second setting, this identified the problem subsets, or sub-populations. Salaudeen also emphasizes the dangers of aggregate statistics for evaluation, which can obscure more granular and consequential information about model performance.

In the course of their work, the researchers separated out the “most miscalculated examples” so as not to conflate spurious correlations within a dataset with situations that are simply difficult to classify.

The NeurIPS paper releases the researchers’ code and some identified subsets for future work.

Once a hospital, or any organization employing machine learning, identifies subsets on which a model is performing poorly, that information can be used to improve the model for its particular task and setting. The researchers recommend that future work adopt OODSelect in order to highlight targets for evaluation and design approaches to improving performance more consistently.

“We hope the released code and OODSelect subsets become a steppingstone,” the researchers write, “toward benchmarks and models that confront the adverse effects of spurious correlations.”



Source_link

READ ALSO

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

Related Posts

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
Al, Analytics and Automation

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

January 22, 2026
Al, Analytics and Automation

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

January 21, 2026
What are Context Graphs? – MarkTechPost
Al, Analytics and Automation

What are Context Graphs? – MarkTechPost

January 21, 2026
IVO’s $55M Boost Signals AI-Driven Law Future (and It’s Just Getting Started)
Al, Analytics and Automation

IVO’s $55M Boost Signals AI-Driven Law Future (and It’s Just Getting Started)

January 20, 2026
How to Design a Fully Streaming Voice Agent with End-to-End Latency Budgets, Incremental ASR, LLM Streaming, and Real-Time TTS
Al, Analytics and Automation

How to Design a Fully Streaming Voice Agent with End-to-End Latency Budgets, Incremental ASR, LLM Streaming, and Real-Time TTS

January 20, 2026
HotChat.AI Image Generator Review: Features and Pricing Explained
Al, Analytics and Automation

HotChat.AI Image Generator Review: Features and Pricing Explained

January 20, 2026
Next Post
Purple Promo Codes and Deals: Up to 30% Off

Purple Promo Codes and Deals: Up to 30% Off

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

How to Start Email Marketing (Step-by-Step Guide) 2025

How to Start Email Marketing (Step-by-Step Guide) 2025

May 29, 2025
How to Track Your ChatGPT Brand Visibility with Semrush

How to Track Your ChatGPT Brand Visibility with Semrush

November 21, 2025
Renforcez vos compétences en communication commerciale

Renforcez vos compétences en communication commerciale

June 15, 2025
How Brands Find Advantage In Leveraging Contradictions

How Brands Find Advantage In Leveraging Contradictions

November 18, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Why CEOs and CHROs Are Turning to Louis Carter to Engineer the Workplaces of the Future
  • What Type of Mattress Is Right for You? (2026)
  • FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
  • Insights on Marketing Automation in 2026
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?