• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, July 3, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

This AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency

Josh by Josh
May 29, 2025
in Al, Analytics and Automation
0
This AI Paper Introduces WEB-SHEPHERD: A Process Reward Model for Web Agents with 40K Dataset and 10× Cost Efficiency
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter


Web navigation focuses on teaching machines how to interact with websites to perform tasks such as searching for information, shopping, or booking services. Building a capable web navigation agent is a complex task because it requires understanding the structure of websites, interpreting user goals, and making a series of decisions across multiple steps. These tasks are further complicated by the need for agents to adapt in dynamic web environments, where content can change frequently and where multimodal information, such as text and images, must be understood together.

A key problem in web navigation is the absence of reliable and detailed reward models that can guide agents in real-time. Existing methods primarily rely on multimodal large language models (MLLMs) like GPT-4o and GPT-4o-mini as evaluators, which are expensive, slow, and often inaccurate, especially when handling long sequences of actions in multi-step tasks. These models use prompting-based evaluation or binary success/failure feedback but fail to provide step-level guidance, often leading to errors such as repeated actions or missing critical steps like clicking specific buttons or filling form fields. This limitation reduces the practicality of deploying web agents in real-world scenarios, where efficiency, accuracy, and cost-effectiveness are crucial.

The research team from Yonsei University and Carnegie Mellon University introduced WEB-SHEPHERD, a process reward model specifically designed for web navigation tasks. WEB-SHEPHERD is the first model to evaluate web navigation agents at the step level, using structured checklists to guide assessments. The researchers also developed the WEBPRM COLLECTION, a dataset of 40,000 step-level annotated web navigation tasks, and the WEBREWARDBENCH benchmark for evaluating PRMs. These resources were designed to enable WEB-SHEPHERD to provide detailed feedback by breaking down complex tasks into smaller, measurable subgoals.

WEB-SHEPHERD works by generating a checklist for each task based on the user’s instruction, such as “Search for product” or “Click on product page,” and evaluates the agent’s progress against these subgoals. The model uses next-token prediction to generate feedback and assigns rewards based on checklist completion. This process enables WEB-SHEPHERD to assess the correctness of each step with fine-grained judgment. The model estimates the reward for each step by combining the probabilities of “Yes,” “No,” and “In Progress” tokens and averages these across the checklist. This detailed scoring system enables agents to receive targeted feedback on their progress, enhancing their ability to navigate complex websites.

The researchers demonstrated that WEB-SHEPHERD significantly outperforms existing models. On the WEBREWARDBENCH benchmark, WEB-SHEPHERD achieved a Mean Reciprocal Rank (MRR) score of 87.6% and a trajectory accuracy of 55% in the text-only setting, compared to GPT-4o-mini’s 47.5% MRR and 0% trajectory accuracy without checklists. When tested in WebArena-lite using GPT-4o-mini as the policy model, WEB-SHEPHERD achieved a 34.55% success rate, which is 10.9 points higher than using GPT-4o-mini as the evaluator, while also being ten times more cost-efficient. In ablation studies, the researchers observed that WEB-SHEPHERD’s performance dropped significantly when checklists or feedback were removed, proving their importance for accurate reward assignments. They also showed that multimodal input, surprisingly, did not always improve performance and sometimes introduced noise.

This research highlights the critical role of detailed process-level rewards in building reliable web agents. The team’s work addresses the core challenge of web navigation—evaluating complex, multi-step actions—and offers a solution that is both scalable and cost-effective. With WEB-SHEPHERD, agents can now receive accurate feedback during navigation, enabling them to make better decisions and complete tasks more effectively.


Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 95k+ ML SubReddit and Subscribe to our Newsletter.


Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.



Source_link

READ ALSO

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output

Confronting the AI/energy conundrum

Related Posts

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output
Al, Analytics and Automation

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output

July 3, 2025
Confronting the AI/energy conundrum
Al, Analytics and Automation

Confronting the AI/energy conundrum

July 3, 2025
Baidu Open Sources ERNIE 4.5: LLM Series Scaling from 0.3B to 424B Parameters
Al, Analytics and Automation

Baidu Open Sources ERNIE 4.5: LLM Series Scaling from 0.3B to 424B Parameters

July 2, 2025
Novel method detects microbial contamination in cell cultures | MIT News
Al, Analytics and Automation

Novel method detects microbial contamination in cell cultures | MIT News

July 2, 2025
Baidu Researchers Propose AI Search Paradigm: A Multi-Agent Framework for Smarter Information Retrieval
Al, Analytics and Automation

Baidu Researchers Propose AI Search Paradigm: A Multi-Agent Framework for Smarter Information Retrieval

July 2, 2025
Merging design and computer science in creative ways | MIT News
Al, Analytics and Automation

Merging design and computer science in creative ways | MIT News

July 1, 2025
Next Post
Circles By VDO.AI: A Must-Read Digital Magazine For Marketing Leaders

Circles By VDO.AI: A Must-Read Digital Magazine For Marketing Leaders

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Eating Bugs – MetaDevo

Eating Bugs – MetaDevo

May 29, 2025
Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

May 30, 2025
Entries For The Elektra Awards 2025 Are Now Open!

Entries For The Elektra Awards 2025 Are Now Open!

May 30, 2025

EDITOR'S PICK

Custom Enterprise App Development in Dubai: 2040 Vision Guide

Custom Enterprise App Development in Dubai: 2040 Vision Guide

June 20, 2025
Mistral AI Introduces Codestral Embed: A High-Performance Code Embedding Model for Scalable Retrieval and Semantic Understanding

Mistral AI Introduces Codestral Embed: A High-Performance Code Embedding Model for Scalable Retrieval and Semantic Understanding

June 3, 2025
How to make the most of Google Keep

How to make the most of Google Keep

June 6, 2025
Why You Need an Effective Customer Win-Back Email in ABM

Why You Need an Effective Customer Win-Back Email in ABM

May 31, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • I Work Full-Time — Here’s the No-Pressure System That Helped Me Stay Consistent on Social Media
  • Squid Game X Script (No Key, Auto Win, Glass Marker)
  • DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output
  • Google’s customizable Gemini chatbots are now in Docs, Sheets, and Gmail
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?