• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, January 22, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

The Dirichlet Process Mixture Model

Josh by Josh
June 19, 2025
in Al, Analytics and Automation
0
The Dirichlet Process Mixture Model
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

READ ALSO

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning


  • June 23, 2014
  • Vasilis Vryniotis
  • . 2 Comments

dirichlet-process-mixture-model-iterationsThis blog post is the fourth part of the series on Clustering with Dirichlet Process Mixture Models. In previous articles we discussed the Finite Dirichlet Mixture Models and we took the limit of their model for infinite k clusters which led us to the introduction of Dirichlet Processes. As we saw, our target is to build a mixture model which does not require us to specify the number of k clusters/components from the beginning. After presenting different representations of Dirichlet Processes, it is now time to actually use DPs to construct an infinite Mixture Model that enable us to perform clustering. The target of this article is to define the Dirichlet Process Mixture Models and discuss the use of Chinese Restaurant Process and Gibbs Sampling. If you have not read the previous posts, it is highly recommended to do so as the topic is a bit theoretical and requires good understanding on the construction of the model.

Update: The Datumbox Machine Learning Framework is now open-source and free to download. Check out the package com.datumbox.framework.machinelearning.clustering to see the implementation of Dirichlet Process Mixture Models in Java.

1. Definition of Dirichlet Process Mixture Model

Using Dirichlet Processes allows us to have a mixture model with infinite components which can be thought as taking the limit of the finite model for k to infinity. Let’s assume that we have the following model:



Equation 1: Dirichlet Process Mixture Model

Where G is defined as and used as a short notation for which is a delta function that takes 1 if and 0 elsewhere. The θi are the cluster parameters which are sampled from G. The generative distribution F is configured by cluster parameters θi and is used to generate xi observations. Finally we can define a Density distribution which is our mixture distribution (countable infinite mixture) with mixing proportions and mixing components .

Figure 1: Graphical Model of Dirichlet Process Mixture Model

Above we can see the equivalent Graphical Model of the DPMM. The G0 is the base distribution of DP and it is usually selected to be conjugate prior to our generative distribution F in order to make the computations easier and make use of the appealing mathematical properties. The α is the scalar hyperparameter of Dirichlet Process and affects the number of clusters that we will get. The larger the value of α, the more the clusters; the smaller the α the fewer clusters. We should note that the value of α expresses the strength of believe in G0. A large value indicates that most of the samples will be distinct and have values concentrated on G0. The G is a random distribution over Θ parameter space sampled from the DP which assigns probabilities to the parameters. The θi is a parameter vector which is drawn from the G distribution and contains the parameters of the cluster, F distribution is parameterized by θi and xi is the data point generated by the Generative Distribution F.

It is important to note that the θi are elements of the Θ parameter space and they “configure” our clusters. They can also be seen as latent variables on xi which tell us from which component/cluster the xi comes from and what are the parameters of this component. Thus for every xi that we observe, we draw a θi from the G distribution. With every draw the distribution changes depending on the previous selections. As we saw in the Blackwell-MacQueen urn scheme the G distribution can be integrated out and our future selections of θi depend only on G0: . Estimating the parameters θi from the previous formula is not always feasible because many implementations (such as Chinese Restaurant Process) involve the enumerating through the exponentially increasing k components. Thus approximate computational methods are used such as Gibbs Sampling. Finally we should note that even though the k clusters are infinite, the number of active clusters is . Thus the θi will repeat and exhibit a clustering effect.

2. Using the Chinese Restaurant Process to define an Infinite Mixture Model

The model defined in the previous segment is mathematically solid, nevertheless it has a major drawback: for every new xi that we observe, we must sample a new θi taking into account the previous values of θ. The problem is that in many cases, sampling these parameters can be a difficult and computationally expensive task.

An alternative approach is to use the Chinese Restaurant Process to model the latent variables zi of cluster assignments. This way instead of using θi to denote both the cluster parameters and the cluster assignments, we use the latent variable zi to indicate the cluster id and then use this value to assign the cluster parameters. As a result, we no longer need to sample a θ every time we get a new observation, but instead we get the cluster assignment by sampling zi from CRP. With this scheme a new θ is sampled only when we need to create a new cluster. Below we present the model of this approach:



Equation 2: Mixture Model with CRP

The above is a generative model that describes how the data xi and the clusters are generated. To perform the cluster analysis we must use the observations xi and estimate the cluster assignments zi.

3. Mixture Model Inference and Gibbs Sampling

Unfortunately since Dirichlet Processes are non-parametric, we can’t use EM algorithm to estimate the latent variables which store the cluster assignments. In order to estimate the assignments we will use the Collapsed Gibbs Sampling.

The Collapsed Gibbs Sampling is a simple Markov Chain Monte Carlo (MCMC) algorithm. It is fast and enables us to integrate out some variables while sampling another variable. Nevertheless this algorithms requires us to select a G0 which is a conjugate prior of F generative distribution in order to be able to solve analytically the equations and be able to sample directly from .

The steps of the Collapsed Gibbs Sampling that we will use to estimate the cluster assignments are the following:

  • Initialize the zi cluster assignments randomly
  • Repeat until convergence
    • Select randomly a xi
    • Keep the other zj fixed for every j≠i:
    • Assign a new value on zi by calculating the “CRP probability” that depends on zj and xj of all j≠i:

In the next article we will focus on how to perform cluster analysis by using Dirichlet Process Mixture models. We will define two different Dirichlet Process Mixture Models which use the Chinese Restaurant Process and the Collapsed Gibbs Sampling in order to perform clustering on continuous datasets and documents.



Source_link

Related Posts

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents
Al, Analytics and Automation

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents

January 22, 2026
FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
Al, Analytics and Automation

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

January 22, 2026
Al, Analytics and Automation

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

January 21, 2026
Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News
Al, Analytics and Automation

Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

January 21, 2026
What are Context Graphs? – MarkTechPost
Al, Analytics and Automation

What are Context Graphs? – MarkTechPost

January 21, 2026
IVO’s $55M Boost Signals AI-Driven Law Future (and It’s Just Getting Started)
Al, Analytics and Automation

IVO’s $55M Boost Signals AI-Driven Law Future (and It’s Just Getting Started)

January 20, 2026
Next Post
The EPA Plans to ‘Reconsider’ Ban on Cancer-Causing Asbestos

The EPA Plans to ‘Reconsider’ Ban on Cancer-Causing Asbestos

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

What It Is, How It Works, and What You Need to Know

What It Is, How It Works, and What You Need to Know

August 7, 2025
SweetDream AI Image Generator Prices, Capabilities, and Feature Breakdown

SweetDream AI Image Generator Prices, Capabilities, and Feature Breakdown

January 1, 2026
I Evaluated 9 Best Expense Management Software, Go Try Them

I Evaluated 9 Best Expense Management Software, Go Try Them

June 15, 2025
Room 117 Prove You Are Not a Dum Dum Roblox Answer

Room 117 Prove You Are Not a Dum Dum Roblox Answer

January 5, 2026

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • 10 Best Cvent Alternatives and Competitors in 2026
  • Discover what’s new in Demand Gen with January’s Drop
  • The 4 Forces Shaping Social Media in 2026 (and What They Mean for Creators)
  • 8 Best Gig Economy Jobs To Consider For Passive Income
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?