• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, July 31, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

New algorithms enable efficient machine learning with symmetric data | MIT News

Josh by Josh
July 30, 2025
in Al, Analytics and Automation
0
New algorithms enable efficient machine learning with symmetric data | MIT News
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter



If you rotate an image of a molecular structure, a human can tell the rotated image is still the same molecule, but a machine-learning model might think it is a new data point. In computer science parlance, the molecule is “symmetric,” meaning the fundamental structure of that molecule remains the same if it undergoes certain transformations, like rotation.

If a drug discovery model doesn’t understand symmetry, it could make inaccurate predictions about molecular properties. But despite some empirical successes, it’s been unclear whether there is a computationally efficient method to train a good model that is guaranteed to respect symmetry.

A new study by MIT researchers answers this question, and shows the first method for machine learning with symmetry that is provably efficient in terms of both the amount of computation and data needed.

These results clarify a foundational question, and they could aid researchers in the development of more powerful machine-learning models that are designed to handle symmetry. Such models would be useful in a variety of applications, from discovering new materials to identifying astronomical anomalies to unraveling complex climate patterns.

“These symmetries are important because they are some sort of information that nature is telling us about the data, and we should take it into account in our machine-learning models. We’ve now shown that it is possible to do machine-learning with symmetric data in an efficient way,” says Behrooz Tahmasebi, an MIT graduate student and co-lead author of this study.

He is joined on the paper by co-lead author and MIT graduate student Ashkan Soleymani; Stefanie Jegelka, an associate professor of electrical engineering and computer science (EECS) and a member of the Institute for Data, Systems, and Society (IDSS) and the Computer Science and Artificial Intelligence Laboratory (CSAIL); and senior author Patrick Jaillet, the Dugald C. Jackson Professor of Electrical Engineering and Computer Science and a principal investigator in the Laboratory for Information and Decision Systems (LIDS). The research was recently presented at the International Conference on Machine Learning.

Studying symmetry

Symmetric data appear in many domains, especially the natural sciences and physics. A model that recognizes symmetries is able to identify an object, like a car, no matter where that object is placed in an image, for example.

Unless a machine-learning model is designed to handle symmetry, it could be less accurate and prone to failure when faced with new symmetric data in real-world situations. On the flip side, models that take advantage of symmetry could be faster and require fewer data for training.

But training a model to process symmetric data is no easy task.

One common approach is called data augmentation, where researchers transform each symmetric data point into multiple data points to help the model generalize better to new data. For instance, one could rotate a molecular structure many times to produce new training data, but if researchers want the model to be guaranteed to respect symmetry, this can be computationally prohibitive.

An alternative approach is to encode symmetry into the model’s architecture. A well-known example of this is a graph neural network (GNN), which inherently handles symmetric data because of how it is designed.

“Graph neural networks are fast and efficient, and they take care of symmetry quite well, but nobody really knows what these models are learning or why they work. Understanding GNNs is a main motivation of our work, so we started with a theoretical evaluation of what happens when data are symmetric,” Tahmasebi says.

They explored the statistical-computational tradeoff in machine learning with symmetric data. This tradeoff means methods that require fewer data can be more computationally expensive, so researchers need to find the right balance.

Building on this theoretical evaluation, the researchers designed an efficient algorithm for machine learning with symmetric data.

Mathematical combinations

To do this, they borrowed ideas from algebra to shrink and simplify the problem. Then, they reformulated the problem using ideas from geometry that effectively capture symmetry.

Finally, they combined the algebra and the geometry into an optimization problem that can be solved efficiently, resulting in their new algorithm.

“Most of the theory and applications were focusing on either algebra or geometry. Here we just combined them,” Tahmasebi says.

The algorithm requires fewer data samples for training than classical approaches, which would improve a model’s accuracy and ability to adapt to new applications.

By proving that scientists can develop efficient algorithms for machine learning with symmetry, and demonstrating how it can be done, these results could lead to the development of new neural network architectures that could be more accurate and less resource-intensive than current models.

Scientists could also use this analysis as a starting point to examine the inner workings of GNNs, and how their operations differ from the algorithm the MIT researchers developed.

“Once we know that better, we can design more interpretable, more robust, and more efficient neural network architectures,” adds Soleymani.

This research is funded, in part, by the National Research Foundation of Singapore, DSO National Laboratories of Singapore, the U.S. Office of Naval Research, the U.S. National Science Foundation, and an Alexander von Humboldt Professorship.



Source_link

READ ALSO

The Ultimate 2025 Guide to Coding LLM Benchmarks and Performance Metrics

7 AI Agent Frameworks for Machine Learning Workflows in 2025

Related Posts

The Ultimate 2025 Guide to Coding LLM Benchmarks and Performance Metrics
Al, Analytics and Automation

The Ultimate 2025 Guide to Coding LLM Benchmarks and Performance Metrics

July 31, 2025
Al, Analytics and Automation

7 AI Agent Frameworks for Machine Learning Workflows in 2025

July 31, 2025
Tried GPTGirlfriend So You Don’t Have To: My Honest Review
Al, Analytics and Automation

Tried GPTGirlfriend So You Don’t Have To: My Honest Review

July 30, 2025
Too Much Thinking Can Break LLMs: Inverse Scaling in Test-Time Compute
Al, Analytics and Automation

Too Much Thinking Can Break LLMs: Inverse Scaling in Test-Time Compute

July 30, 2025
Your First Containerized Machine Learning Deployment with Docker and FastAPI
Al, Analytics and Automation

Your First Containerized Machine Learning Deployment with Docker and FastAPI

July 30, 2025
Microsoft Unveils “Copilot Mode” in Edge – Is This the Future of Browsing?
Al, Analytics and Automation

Microsoft Unveils “Copilot Mode” in Edge – Is This the Future of Browsing?

July 30, 2025
Next Post
Fashion Takes the Lead on CTV with Sky-High Engagement Rates: VDO.AI Report

Fashion Takes the Lead on CTV with Sky-High Engagement Rates: VDO.AI Report

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

May 30, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025

EDITOR'S PICK

Are you leading diversity conversations at your company, yet?

Are you leading diversity conversations at your company, yet?

June 15, 2025
Preparing Leaders For The Revolution

Preparing Leaders For The Revolution

June 1, 2025
NVIDIA AI Released DiffusionRenderer: An AI Model for Editable, Photorealistic 3D Scenes from a Single Video

NVIDIA AI Released DiffusionRenderer: An AI Model for Editable, Photorealistic 3D Scenes from a Single Video

July 10, 2025
No Humans Needed: Machines Will Make and Distribute the Ads

No Humans Needed: Machines Will Make and Distribute the Ads

June 14, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Cost to Build a Health Monitoring App Like MyChart
  • International Intern Day 2025 at Google
  • How to grow your brand in 2025
  • ChatGPT-based apps like Cleo give surprisingly sounds financial advice
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?