• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Friday, January 23, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Deep-learning model predicts how fruit flies form, cell by cell | MIT News

Josh by Josh
December 15, 2025
in Al, Analytics and Automation
0
Deep-learning model predicts how fruit flies form, cell by cell | MIT News
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter



During early development, tissues and organs begin to bloom through the shifting, splitting, and growing of many thousands of cells.

A team of MIT engineers has now developed a way to predict, minute by minute, how individual cells will fold, divide, and rearrange during a fruit fly’s earliest stage of growth. The new method may one day be applied to predict the development of more complex tissues, organs, and organisms. It could also help scientists identify cell patterns that correspond to early-onset diseases, such as asthma and cancer.

In a study appearing today in the journal Nature Methods, the team presents a new deep-learning model that learns, then predicts, how certain geometric properties of individual cells will change as a fruit fly develops. The model records and tracks properties such as a cell’s position, and whether it is touching a neighboring cell at a given moment.

The team applied the model to videos of developing fruit fly embryos, each of which starts as a cluster of about 5,000 cells. They found the model could predict, with 90 percent accuracy, how each of the 5,000 cells would fold, shift, and rearrange, minute by minute, during the first hour of development, as the embryo morphs from a smooth, uniform shape into more defined structures and features.

“This very initial phase is known as gastrulation, which takes place over roughly one hour, when individual cells are rearranging on a time scale of minutes,” says study author Ming Guo, associate professor of mechanical engineering at MIT. “By accurately modeling this early period, we can start to uncover how local cell interactions give rise to global tissues and organisms.”

The researchers hope to apply the model to predict the cell-by-cell development in other species, such zebrafish and mice. Then, they can begin to identify patterns that are common across species. The team also envisions that the method could be used to discern early patterns of disease, such as in asthma. Lung tissue in people with asthma looks markedly different from healthy lung tissue. How asthma-prone tissue initially develops is an unknown process that the team’s new method could potentially reveal.

“Asthmatic tissues show different cell dynamics when imaged live,” says co-author and MIT graduate student Haiqian Yang. “We envision that our model could capture these subtle dynamical differences and provide a more comprehensive representation of tissue behavior, potentially improving diagnostics or drug-screening assays.”

The study’s co-authors are Markus Buehler, the McAfee Professor of Engineering in MIT’s Department of Civil and Environmental Engineering; George Roy and Tomer Stern of the University of Michigan; and Anh Nguyen and Dapeng Bi of Northeastern University.

Points and foams

Scientists typically model how an embryo develops in one of two ways: as a point cloud, where each point represents an individual cell as point that moves over time; or as a “foam,” which represents individual cells as bubbles that shift and slide against each other, similar to the bubbles in shaving foam.

Rather than choose between the two approaches, Guo and Yang embraced both.

“There’s a debate about whether to model as a point cloud or a foam,” Yang says. “But both of them are essentially different ways of modeling the same underlying graph, which is an elegant way to represent living tissues. By combining these as one graph, we can highlight more structural information, like how cells are connected to each other as they rearrange over time.”

At the heart of the new model is a “dual-graph” structure that represents a developing embryo as both moving points and bubbles. Through this dual representation, the researchers hoped to capture more detailed geometric properties of individual cells, such as the location of a cell’s nucleus, whether a cell is touching a neighboring cell, and whether it is folding or dividing at a given moment in time.

As a proof of principle, the team trained the new model to “learn” how individual cells change over time during fruit fly gastrulation.

“The overall shape of the fruit fly at this stage is roughly an ellipsoid, but there are gigantic dynamics going on at the surface during gastrulation,” Guo says. “It goes from entirely smooth to forming a number of folds at different angles. And we want to predict all of those dynamics, moment to moment, and cell by cell.”

Where and when

For their new study, the researchers applied the new model to high-quality videos of fruit fly gastrulation taken by their collaborators at the University of Michigan. The videos are one-hour recordings of developing fruit flies, taken at single-cell resolution. What’s more, the videos contain labels of individual cells’ edges and nuclei — data that are incredibly detailed and difficult to come by.

“These videos are of extremely high quality,” Yang says. “This data is very rare, where you get submicron resolution of the whole 3D volume at a pretty fast frame rate.”

The team trained the new model with data from three of four fruit fly embryo videos, such that the model might “learn” how individual cells interact and change as an embryo develops. They then tested the model on an entirely new fruit fly video, and found that it was able to predict with high accuracy how most of the embryo’s 5,000 cells changed from minute to minute.

Specifically, the model could predict properties of individual cells, such as whether they will fold, divide, or continue sharing an edge with a neighboring cell, with about 90 percent accuracy.

“We end up predicting not only whether these things will happen, but also when,” Guo says. “For instance, will this cell detach from this cell seven minutes from now, or eight? We can tell when that will happen.”

The team believes that, in principle, the new model, and the dual-graph approach, should be able to predict the cell-by-cell development of other multiceullar systems, such as more complex species, and even some human tissues and organs. The limiting factor is the availability of high-quality video data.

“From the model perspective, I think it’s ready,” Guo says. “The real bottleneck is the data. If we have good quality data of specific tissues, the model could be directly applied to predict the development of many more structures.”

This work is supported, in part, by the U.S. National Institutes of Health.



Source_link

READ ALSO

Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future

Related Posts

Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass
Al, Analytics and Automation

Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass

January 23, 2026
Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future
Al, Analytics and Automation

Slow Down the Machines? Wall Street and Silicon Valley at Odds Over A.I.’s Nearest Future

January 22, 2026
Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents
Al, Analytics and Automation

Inworld AI Releases TTS-1.5 For Realtime, Production Grade Voice Agents

January 22, 2026
FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning
Al, Analytics and Automation

FlashLabs Researchers Release Chroma 1.0: A 4B Real Time Speech Dialogue Model With Personalized Voice Cloning

January 22, 2026
Al, Analytics and Automation

Salesforce AI Introduces FOFPred: A Language-Driven Future Optical Flow Prediction Framework that Enables Improved Robot Control and Video Generation

January 21, 2026
Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News
Al, Analytics and Automation

Why it’s critical to move beyond overly aggregated machine-learning metrics | MIT News

January 21, 2026
Next Post
Nvidia Becomes a Major Model Maker With Nemotron 3

Nvidia Becomes a Major Model Maker With Nemotron 3

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

Attribution Breakdowns vs. Compare Attribution Settings Explained

Attribution Breakdowns vs. Compare Attribution Settings Explained

January 19, 2026
Liquid AI Releases LFM2-ColBERT-350M: A New Small Model that brings Late Interaction Retrieval to Multilingual and Cross-Lingual RAG

Liquid AI Releases LFM2-ColBERT-350M: A New Small Model that brings Late Interaction Retrieval to Multilingual and Cross-Lingual RAG

October 29, 2025

StepFun AI Releases Step-Audio 2 Mini: An Open-Source 8B Speech-to-Speech AI Model that Surpasses GPT-4o-Audio

September 1, 2025
How AI in Electric Vehicles is Driving Innovation

How AI in Electric Vehicles is Driving Innovation

September 8, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • How I Got AI to Quote Us with 4 Simple Strategies
  • List of Spin a Baddie Codes
  • Sennheiser introduces new TV headphones bundle with Auracast
  • Microsoft Releases VibeVoice-ASR: A Unified Speech-to-Text Model Designed to Handle 60-Minute Long-Form Audio in a Single Pass
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?