• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Friday, August 29, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

MIT researchers develop AI tool to improve flu vaccine strain selection | MIT News

Josh by Josh
August 29, 2025
in Al, Analytics and Automation
0
MIT researchers develop AI tool to improve flu vaccine strain selection | MIT News
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter



Every year, global health experts are faced with a high-stakes decision: Which influenza strains should go into the next seasonal vaccine? The choice must be made months in advance, long before flu season even begins, and it can often feel like a race against the clock. If the selected strains match those that circulate, the vaccine will likely be highly effective. But if the prediction is off, protection can drop significantly, leading to (potentially preventable) illness and strain on health care systems.

This challenge became even more familiar to scientists in the years during the Covid-19 pandemic. Think back to the time (and time and time again), when new variants emerged just as vaccines were being rolled out. Influenza behaves like a similar, rowdy cousin, mutating constantly and unpredictably. That makes it hard to stay ahead, and therefore harder to design vaccines that remain protective.

To reduce this uncertainty, scientists at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Abdul Latif Jameel Clinic for Machine Learning in Health set out to make vaccine selection more accurate and less reliant on guesswork. They created an AI system called VaxSeer, designed to predict dominant flu strains and identify the most protective vaccine candidates, months ahead of time. The tool uses deep learning models trained on decades of viral sequences and lab test results to simulate how the flu virus might evolve and how the vaccines will respond.

Traditional evolution models often analyze the effect of single amino acid mutations independently. “VaxSeer adopts a large protein language model to learn the relationship between dominance and the combinatorial effects of mutations,” explains Wenxian Shi, a PhD student in MIT’s Department of Electrical Engineering and Computer Science, researcher at CSAIL, and lead author of a new paper on the work. “Unlike existing protein language models that assume a static distribution of viral variants, we model dynamic dominance shifts, making it better suited for rapidly evolving viruses like influenza.”

An open-access report on the study was published today in Nature Medicine.

The future of flu

VaxSeer has two core prediction engines: one that estimates how likely each viral strain is to spread (dominance), and another that estimates how effectively a vaccine will neutralize that strain (antigenicity). Together, they produce a predicted coverage score: a forward-looking measure of how well a given vaccine is likely to perform against future viruses.

The scale of the score could be from an infinite negative to 0. The closer the score to 0, the better the antigenic match of vaccine strains to the circulating viruses. (You can imagine it as the negative of some kind of “distance.”)

In a 10-year retrospective study, the researchers evaluated VaxSeer’s recommendations against those made by the World Health Organization (WHO) for two major flu subtypes: A/H3N2 and A/H1N1. For A/H3N2, VaxSeer’s choices outperformed the WHO’s in nine out of 10 seasons, based on retrospective empirical coverage scores (a surrogate metric of the vaccine effectiveness, calculated from the observed dominance from past seasons and experimental HI test results). The team used this to evaluate vaccine selections, as the effectiveness is only available for vaccines actually given to the population. 

For A/H1N1, it outperformed or matched the WHO in six out of 10 seasons. In one notable case, for the 2016 flu season, VaxSeer identified a strain that wasn’t chosen by the WHO until the following year. The model’s predictions also showed strong correlation with real-world vaccine effectiveness estimates, as reported by the CDC, Canada’s Sentinel Practitioner Surveillance Network, and Europe’s I-MOVE program. VaxSeer’s predicted coverage scores aligned closely with public health data on flu-related illnesses and medical visits prevented by vaccination.

So how exactly does VaxSeer make sense of all these data? Intuitively, the model first estimates how rapidly a viral strain spreads over time using a protein language model, and then determines its dominance by accounting for competition among different strains.

Once the model has calculated its insights, they’re plugged into a mathematical framework based on something called ordinary differential equations to simulate viral spread over time. For antigenicity, the system estimates how well a given vaccine strain will perform in a common lab test called the hemagglutination inhibition assay. This measures how effectively antibodies can inhibit the virus from binding to human red blood cells, which is a widely used proxy for antigenic match/antigenicity. 

Outpacing evolution

“By modeling how viruses evolve and how vaccines interact with them, AI tools like VaxSeer could help health officials make better, faster decisions — and stay one step ahead in the race between infection and immunity,” says Shi. 

VaxSeer currently focuses only on the flu virus’s HA (hemagglutinin) protein,the major antigen of influenza. Future versions could incorporate other proteins like NA (neuraminidase), and factors like immune history, manufacturing constraints, or dosage levels. Applying the system to other viruses would also require large, high-quality datasets that track both viral evolution and immune responses — data that aren’t always publicly available. The team, however is currently working on the methods that can predict viral evolution in low-data regimes building on relations between viral families

“Given the speed of viral evolution, current therapeutic development often lags behind. VaxSeer is our attempt to catch up,” says Regina Barzilay, the School of Engineering Distinguished Professor for AI and Health at MIT, AI lead of Jameel Clinic, and CSAIL principal investigator. 

“This paper is impressive, but what excites me perhaps even more is the team’s ongoing work on predicting viral evolution in low-data settings,” says Assistant Professor Jon Stokes of the Department of Biochemistry and Biomedical Sciences at McMaster University in Hamilton, Ontario. “The implications go far beyond influenza. Imagine being able to anticipate how antibiotic-resistant bacteria or drug-resistant cancers might evolve, both of which can adapt rapidly. This kind of predictive modeling opens up a powerful new way of thinking about how diseases change, giving us the opportunity to stay one step ahead and design clinical interventions before escape becomes a major problem.”

Shi and Barzilay wrote the paper with MIT CSAIL postdoc Jeremy Wohlwend ’16, MEng ’17, PhD ’25 and recent CSAIL affiliate Menghua Wu ’19, MEng ’20, PhD ’25. Their work was supported, in part, by the U.S. Defense Threat Reduction Agency and MIT Jameel Clinic.



Source_link

READ ALSO

Gen Z Still Counts on Humans for Financial Advice—But AI Skills Are a Must

Grounding Medical AI in Expert‑Labeled Data: A Case Study on PadChest-GR- the First Multimodal, Bilingual, Sentence‑Level Dataset for Radiology Reporting

Related Posts

Gen Z Still Counts on Humans for Financial Advice—But AI Skills Are a Must
Al, Analytics and Automation

Gen Z Still Counts on Humans for Financial Advice—But AI Skills Are a Must

August 29, 2025
Grounding Medical AI in Expert‑Labeled Data: A Case Study on PadChest-GR- the First Multimodal, Bilingual, Sentence‑Level Dataset for Radiology Reporting
Al, Analytics and Automation

Grounding Medical AI in Expert‑Labeled Data: A Case Study on PadChest-GR- the First Multimodal, Bilingual, Sentence‑Level Dataset for Radiology Reporting

August 28, 2025
Top 6 Medical Image Annotation Tools in 2025
Al, Analytics and Automation

Top 6 Medical Image Annotation Tools in 2025

August 28, 2025
Why Image and Video Features Matter
Al, Analytics and Automation

Why Image and Video Features Matter

August 28, 2025
Australia’s Large Language Model Landscape: Technical Assessment
Al, Analytics and Automation

Australia’s Large Language Model Landscape: Technical Assessment

August 28, 2025
The Power of AI in Creating Engaging Content Without Word Limits
Al, Analytics and Automation

The Power of AI in Creating Engaging Content Without Word Limits

August 28, 2025
Next Post
Snackable Meets Scrollable: How VDO Shots Transforms the Reader Experience

Snackable Meets Scrollable: How VDO Shots Transforms the Reader Experience

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

Refreshing a Legacy Brand for a Meaningful Future – Truly Deeply – Brand Strategy & Creative Agency Melbourne

June 7, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025

EDITOR'S PICK

How to Reach the Right People Without Relying on Targeting Inputs

How to Reach the Right People Without Relying on Targeting Inputs

July 31, 2025
Do falling birth rates matter in an AI future?

Do falling birth rates matter in an AI future?

July 22, 2025

How to Schedule Pinterest Pins Directly From Your Browser

June 17, 2025
Google’s Gemini AI will get more personalized by remembering details automatically

Google’s Gemini AI will get more personalized by remembering details automatically

August 14, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • A Guide to Google Analytics: Setup, Goals, and Analysis
  • Why You Should Not Turn Off Ads
  • ChatGPT isn’t just for cheating. Teachers are using AI to save time.
  • Gen Z Still Counts on Humans for Financial Advice—But AI Skills Are a Must
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?