• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Wednesday, October 8, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

How to more efficiently study complex treatment interactions | MIT News

Josh by Josh
July 16, 2025
in Al, Analytics and Automation
0
How to more efficiently study complex treatment interactions | MIT News
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter



MIT researchers have developed a new theoretical framework for studying the mechanisms of treatment interactions. Their approach allows scientists to efficiently estimate how combinations of treatments will affect a group of units, such as cells, enabling a researcher to perform fewer costly experiments while gathering more accurate data.

As an example, to study how interconnected genes affect cancer cell growth, a biologist might need to use a combination of treatments to target multiple genes at once. But because there could be billions of potential combinations for each round of the experiment, choosing a subset of combinations to test might bias the data their experiment generates. 

In contrast, the new framework considers the scenario where the user can efficiently design an unbiased experiment by assigning all treatments in parallel, and can control the outcome by adjusting the rate of each treatment.

The MIT researchers theoretically proved a near-optimal strategy in this framework and performed a series of simulations to test it in a multiround experiment. Their method minimized the error rate in each instance.

This technique could someday help scientists better understand disease mechanisms and develop new medicines to treat cancer or genetic disorders.

“We’ve introduced a concept people can think more about as they study the optimal way to select combinatorial treatments at each round of an experiment. Our hope is this can someday be used to solve biologically relevant questions,” says graduate student Jiaqi Zhang, an Eric and Wendy Schmidt Center Fellow and co-lead author of a paper on this experimental design framework.

She is joined on the paper by co-lead author Divya Shyamal, an MIT undergraduate; and senior author Caroline Uhler, the Andrew and Erna Viterbi Professor of Engineering in EECS and the MIT Institute for Data, Systems, and Society (IDSS), who is also director of the Eric and Wendy Schmidt Center and a researcher at MIT’s Laboratory for Information and Decision Systems (LIDS). The research was recently presented at the International Conference on Machine Learning.

Simultaneous treatments

Treatments can interact with each other in complex ways. For instance, a scientist trying to determine whether a certain gene contributes to a particular disease symptom may have to target several genes simultaneously to study the effects.

To do this, scientists use what are known as combinatorial perturbations, where they apply multiple treatments at once to the same group of cells.

“Combinatorial perturbations will give you a high-level network of how different genes interact, which provides an understanding of how a cell functions,” Zhang explains.

Since genetic experiments are costly and time-consuming, the scientist aims to select the best subset of treatment combinations to test, which is a steep challenge due to the huge number of possibilities.

Picking a suboptimal subset can generate biased results by focusing only on combinations the user selected in advance.

The MIT researchers approached this problem differently by looking at a probabilistic framework. Instead of focusing on a selected subset, each unit randomly takes up combinations of treatments based on user-specified dosage levels for each treatment.

The user sets dosage levels based on the goal of their experiment — perhaps this scientist wants to study the effects of four different drugs on cell growth. The probabilistic approach generates less biased data because it does not restrict the experiment to a predetermined subset of treatments.

The dosage levels are like probabilities, and each cell receives a random combination of treatments. If the user sets a high dosage, it is more likely most of the cells will take up that treatment. A smaller subset of cells will take up that treatment if the dosage is low.

“From there, the question is how do we design the dosages so that we can estimate the outcomes as accurately as possible? This is where our theory comes in,” Shyamal adds.

Their theoretical framework shows the best way to design these dosages so one can learn the most about the characteristic or trait they are studying.

After each round of the experiment, the user collects the results and feeds those back into the experimental framework. It will output the ideal dosage strategy for the next round, and so on, actively adapting the strategy over multiple rounds.

Optimizing dosages, minimizing error

The researchers proved their theoretical approach generates optimal dosages, even when the dosage levels are affected by a limited supply of treatments or when noise in the experimental outcomes varies at each round.

In simulations, this new approach had the lowest error rate when comparing estimated and actual outcomes of multiround experiments, outperforming two baseline methods.

In the future, the researchers want to enhance their experimental framework to consider interference between units and the fact that certain treatments can lead to selection bias. They would also like to apply this technique in a real experimental setting.

“This is a new approach to a very interesting problem that is hard to solve. Now, with this new framework in hand, we can think more about the best way to design experiments for many different applications,” Zhang says.

This research is funded, in part, by the Advanced Undergraduate Research Opportunities Program at MIT, Apple, the National Institutes of Health, the Office of Naval Research, the Department of Energy, the Eric and Wendy Schmidt Center at the Broad Institute, and a Simons Investigator Award.



Source_link

READ ALSO

Model Context Protocol (MCP) vs Function Calling vs OpenAPI Tools — When to Use Each?

Ai Flirt Chat Generator With Photos

Related Posts

Model Context Protocol (MCP) vs Function Calling vs OpenAPI Tools — When to Use Each?
Al, Analytics and Automation

Model Context Protocol (MCP) vs Function Calling vs OpenAPI Tools — When to Use Each?

October 8, 2025
Ai Flirt Chat Generator With Photos
Al, Analytics and Automation

Ai Flirt Chat Generator With Photos

October 8, 2025
Fighting for the health of the planet with AI | MIT News
Al, Analytics and Automation

Fighting for the health of the planet with AI | MIT News

October 8, 2025
Building a Human Handoff Interface for AI-Powered Insurance Agent Using Parlant and Streamlit
Al, Analytics and Automation

Building a Human Handoff Interface for AI-Powered Insurance Agent Using Parlant and Streamlit

October 7, 2025
How OpenAI’s Sora 2 Is Transforming Toy Design into Moving Dreams
Al, Analytics and Automation

How OpenAI’s Sora 2 Is Transforming Toy Design into Moving Dreams

October 7, 2025
Printable aluminum alloy sets strength records, may enable lighter aircraft parts | MIT News
Al, Analytics and Automation

Printable aluminum alloy sets strength records, may enable lighter aircraft parts | MIT News

October 7, 2025
Next Post
6 Lead Finder Tools Solopreneurs Use to Grow Faster

6 Lead Finder Tools Solopreneurs Use to Grow Faster

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025

EDITOR'S PICK

Using AI to tackle Type 2 diabetes in Taiwan

Using AI to tackle Type 2 diabetes in Taiwan

June 12, 2025
Mirela Cialai Q&A: Customer Engagement Book Interview

Mirela Cialai Q&A: Customer Engagement Book Interview

June 12, 2025
Five Lessons from CollegeVine’s AI-powered Vineyard Summit

Five Lessons from CollegeVine’s AI-powered Vineyard Summit

August 25, 2025
5 Google News SEO Tactics to Help Your Articles Rank

5 Google News SEO Tactics to Help Your Articles Rank

September 18, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • How Often Should You Post on TikTok? Data From 11 Million+ Posts
  • Grow a Garden Persimmon Wiki
  • Model Context Protocol (MCP) vs Function Calling vs OpenAPI Tools — When to Use Each?
  • Gemini CLI extensions let you customize your command line
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?