• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, July 3, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Study shows vision-language models can’t handle queries with negation words | MIT News

Josh by Josh
June 22, 2025
in Al, Analytics and Automation
0
Study shows vision-language models can’t handle queries with negation words | MIT News
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter



Imagine a radiologist examining a chest X-ray from a new patient. She notices the patient has swelling in the tissue but does not have an enlarged heart. Looking to speed up diagnosis, she might use a vision-language machine-learning model to search for reports from similar patients.

But if the model mistakenly identifies reports with both conditions, the most likely diagnosis could be quite different: If a patient has tissue swelling and an enlarged heart, the condition is very likely to be cardiac related, but with no enlarged heart there could be several underlying causes.

In a new study, MIT researchers have found that vision-language models are extremely likely to make such a mistake in real-world situations because they don’t understand negation — words like “no” and “doesn’t” that specify what is false or absent. 

“Those negation words can have a very significant impact, and if we are just using these models blindly, we may run into catastrophic consequences,” says Kumail Alhamoud, an MIT graduate student and lead author of this study.

The researchers tested the ability of vision-language models to identify negation in image captions. The models often performed as well as a random guess. Building on those findings, the team created a dataset of images with corresponding captions that include negation words describing missing objects.

They show that retraining a vision-language model with this dataset leads to performance improvements when a model is asked to retrieve images that do not contain certain objects. It also boosts accuracy on multiple choice question answering with negated captions.

But the researchers caution that more work is needed to address the root causes of this problem. They hope their research alerts potential users to a previously unnoticed shortcoming that could have serious implications in high-stakes settings where these models are currently being used, from determining which patients receive certain treatments to identifying product defects in manufacturing plants.

“This is a technical paper, but there are bigger issues to consider. If something as fundamental as negation is broken, we shouldn’t be using large vision/language models in many of the ways we are using them now — without intensive evaluation,” says senior author Marzyeh Ghassemi, an associate professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Institute of Medical Engineering Sciences and the Laboratory for Information and Decision Systems.

Ghassemi and Alhamoud are joined on the paper by Shaden Alshammari, an MIT graduate student; Yonglong Tian of OpenAI; Guohao Li, a former postdoc at Oxford University; Philip H.S. Torr, a professor at Oxford; and Yoon Kim, an assistant professor of EECS and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. The research will be presented at Conference on Computer Vision and Pattern Recognition.

Neglecting negation

Vision-language models (VLM) are trained using huge collections of images and corresponding captions, which they learn to encode as sets of numbers, called vector representations. The models use these vectors to distinguish between different images.

A VLM utilizes two separate encoders, one for text and one for images, and the encoders learn to output similar vectors for an image and its corresponding text caption.

“The captions express what is in the images — they are a positive label. And that is actually the whole problem. No one looks at an image of a dog jumping over a fence and captions it by saying ‘a dog jumping over a fence, with no helicopters,’” Ghassemi says.

Because the image-caption datasets don’t contain examples of negation, VLMs never learn to identify it.

To dig deeper into this problem, the researchers designed two benchmark tasks that test the ability of VLMs to understand negation.

For the first, they used a large language model (LLM) to re-caption images in an existing dataset by asking the LLM to think about related objects not in an image and write them into the caption. Then they tested models by prompting them with negation words to retrieve images that contain certain objects, but not others.

For the second task, they designed multiple choice questions that ask a VLM to select the most appropriate caption from a list of closely related options. These captions differ only by adding a reference to an object that doesn’t appear in the image or negating an object that does appear in the image.

The models often failed at both tasks, with image retrieval performance dropping by nearly 25 percent with negated captions. When it came to answering multiple choice questions, the best models only achieved about 39 percent accuracy, with several models performing at or even below random chance.

One reason for this failure is a shortcut the researchers call affirmation bias — VLMs ignore negation words and focus on objects in the images instead.

“This does not just happen for words like ‘no’ and ‘not.’ Regardless of how you express negation or exclusion, the models will simply ignore it,” Alhamoud says.

This was consistent across every VLM they tested.

“A solvable problem”

Since VLMs aren’t typically trained on image captions with negation, the researchers developed datasets with negation words as a first step toward solving the problem.

Using a dataset with 10 million image-text caption pairs, they prompted an LLM to propose related captions that specify what is excluded from the images, yielding new captions with negation words.

They had to be especially careful that these synthetic captions still read naturally, or it could cause a VLM to fail in the real world when faced with more complex captions written by humans.

They found that finetuning VLMs with their dataset led to performance gains across the board. It improved models’ image retrieval abilities by about 10 percent, while also boosting performance in the multiple-choice question answering task by about 30 percent.

“But our solution is not perfect. We are just recaptioning datasets, a form of data augmentation. We haven’t even touched how these models work, but we hope this is a signal that this is a solvable problem and others can take our solution and improve it,” Alhamoud says.

At the same time, he hopes their work encourages more users to think about the problem they want to use a VLM to solve and design some examples to test it before deployment.

In the future, the researchers could expand upon this work by teaching VLMs to process text and images separately, which may improve their ability to understand negation. In addition, they could develop additional datasets that include image-caption pairs for specific applications, such as health care.



Source_link

READ ALSO

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output

Confronting the AI/energy conundrum

Related Posts

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output
Al, Analytics and Automation

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output

July 3, 2025
Confronting the AI/energy conundrum
Al, Analytics and Automation

Confronting the AI/energy conundrum

July 3, 2025
Baidu Open Sources ERNIE 4.5: LLM Series Scaling from 0.3B to 424B Parameters
Al, Analytics and Automation

Baidu Open Sources ERNIE 4.5: LLM Series Scaling from 0.3B to 424B Parameters

July 2, 2025
Novel method detects microbial contamination in cell cultures | MIT News
Al, Analytics and Automation

Novel method detects microbial contamination in cell cultures | MIT News

July 2, 2025
Baidu Researchers Propose AI Search Paradigm: A Multi-Agent Framework for Smarter Information Retrieval
Al, Analytics and Automation

Baidu Researchers Propose AI Search Paradigm: A Multi-Agent Framework for Smarter Information Retrieval

July 2, 2025
Merging design and computer science in creative ways | MIT News
Al, Analytics and Automation

Merging design and computer science in creative ways | MIT News

July 1, 2025
Next Post
The Blood of Dawnwalker developers share a look at gameplay from the upcoming vampire fantasy RPG

The Blood of Dawnwalker developers share a look at gameplay from the upcoming vampire fantasy RPG

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Eating Bugs – MetaDevo

Eating Bugs – MetaDevo

May 29, 2025
Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

May 30, 2025
Entries For The Elektra Awards 2025 Are Now Open!

Entries For The Elektra Awards 2025 Are Now Open!

May 30, 2025

EDITOR'S PICK

28 YouTube tips to grow your channel in 2025

28 YouTube tips to grow your channel in 2025

May 27, 2025

Planning Your Capital Campaign Kickoff Event: 4 Tips

June 3, 2025
Behind the Scenes of Continuous Improvement: Interview with a Regpack API Lead

Behind the Scenes of Continuous Improvement: Interview with a Regpack API Lead

June 8, 2025

Indonesian Government Targets 16.6% Tax Revenue Growth In 2019

April 22, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Expanded access to Google Vids and no-cost AI tools in Classroom
  • How to Do a Reverse Image Search & Which Tools to Use
  • I Work Full-Time — Here’s the No-Pressure System That Helped Me Stay Consistent on Social Media
  • Squid Game X Script (No Key, Auto Win, Glass Marker)
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?