• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, July 3, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

Datumbox Machine Learning Framework version 0.8.0 released

Josh by Josh
June 11, 2025
in Al, Analytics and Automation
0
Datumbox Machine Learning Framework version 0.8.0 released
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

READ ALSO

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output

Confronting the AI/energy conundrum


  • January 15, 2017
  • Vasilis Vryniotis
  • . 1 Comment

Datumbox Framework v0.8.0 is out and packs several powerful features! This version brings new Preprocessing, Feature Selection and Model Selection algorithms, new powerful Storage Engines that give better control on how the Models and the Dataframes are saved/loaded, several pre-trained Machine Learning models and lots of memory & speed improvements. Download it now from Github or Maven Central Repository.

One of the main targets of version 0.8.0 was to improve the Storage mechanisms of the framework and make disk-based training available to all the supported algorithms. The new storage engines give better control over how and when the models are being persisted. One important change is that the models are not being stored automatically after the fit() method is finished but instead one needs to explicitly call the save() method providing the name of the model. This enables us not only to discard easier temporary algorithms without going through a serialization phase but also to save/load the Dataframes:


Configuration configuration = Configuration.getConfiguration();
Dataframe data = ...; //load a dataframe here

MaximumEntropy.TrainingParameters params = new MaximumEntropy.TrainingParameters();
MaximumEntropy model = MLBuilder.create(params, getConfiguration());
model.fit(data);
model.save("MyModel"); //save the model using the specific name
model.close();

data.save("MyData"); //save the data using a specific name
data.close();

data = Dataframe.Builder.load("MyData", configuration); //load the data
model = MLBuilder.load(MaximumEntropy.class, "MyModel", configuration); //load the model
model.predict(data);
model.delete(); //delete the model

Currently we support two storage engines: The InMemory engine which is very fast as it loads everything in memory and the MapDB engine which is slower but permits disk-based training. You can control which engine you use by changing your datumbox.configuration.properties or you can programmatically modify the configuration objects. Each engine has its own configuration file but again you can modify everything programmatically:


Configuration configuration = Configuration.getConfiguration(); //conf from properties file

configuration.setStorageConfiguration(new InMemoryConfiguration()); //use In-Memory engine
//configuration.setStorageConfiguration(new MapDBConfiguration()); //use MapDB engine

Please note that in both engines, there is a directory setting which controls where the models are being stored (inMemoryConfiguration.directory and mapDBConfiguration.directory properties in config files). Make sure you change them or else the models will be written on the temporary folder of your system. For more information on how you structure the configuration files have a look on the Code Example project.

With the new Storage mechanism in place, it is now feasible to share publicly pre-trained models that cover the areas of Sentiment Analysis, Spam Detection, Language Detection, Topic Classification and all the other models that are available via the Datumbox API. You can now download and use all the pre-trained models on your project without requiring calling the API and without being limited by the number of daily calls. Currently the published models are trained using the InMemory storage engine and they support only English. On future releases, I plan to provide support for more languages.

In the new framework, there are several changes on the public methods of many of the classes (hence it is not backwards compatible). The most notable difference is on the way the models are initialized. As we saw in the earlier code example, the models are not directly instantiated but instead the MLBuilder class is used to either create or load a model. The training parameters are provided directly to the builder and they can’t be changed with a setter.

Another improvement is on the way we perform Model Selection. The v0.8.0 introduces the new modelselection package which offers all the necessary tools for validating and measuring the performance of our models. In the metrics subpackage we provide the most important validation metrics for classification, clustering, regression and recommendation. Note that the ValidationMetrics are removed from each individual algorithm and they are no longer stored together with the model. The framework offers the new splitters subpackage which enables splitting the original dataset using different schemes. Currently K-fold splits are performed using the KFoldSplitter class while partitioning the dataset into a training and test set can be achieved with the ShuffleSplitter. Finally to quickly validate a model, the framework offers the Validator class. Here is how one can perform K-fold cross validation within a couple of lines of code:


ClassificationMetrics vm = new Validator<>(ClassificationMetrics.class, configuration)
    .validate(new KFoldSplitter(k).split(data), new MaximumEntropy.TrainingParameters());

The new Preprocessing package replaces the old Data Transformers and gives better control on how we scale and encode the data before the machine learning algorithms. The following algorithms are supported for scaling numerical variables: MinMaxScaler, StandardScaler, MaxAbsScaler and BinaryScaler. For encoding categorical variables into booleans you can use the following methods: OneHotEncoder and CornerConstraintsEncoder. Here is how you can use the new algorithms:


StandardScaler numericalScaler = MLBuilder.create(
    new StandardScaler.TrainingParameters(), 
    configuration
);
numericalScaler.fit_transform(trainingData);

CornerConstraintsEncoder categoricalEncoder = MLBuilder.create(
    new CornerConstraintsEncoder.TrainingParameters(), 
    configuration
);
categoricalEncoder.fit_transform(trainingData);

Another important update is the fact that the Feature Selection package was rewritten. Currently all feature selection algorithms focus on specific datatypes, making it possible to chain different methods together. As a result the TextClassifier and the Modeler classes receive a list of feature selector parameters rather than just one.

As mentioned earlier all the algorithms now support disk-based training, including those that use Matrices (only exception is the Support Vector Machines). The new storage engine mechanism even makes it possible to configure some algorithms or dataframes to be stored in memory while others on disk. Several speed improvements were introduced primarily due to the new storage engine mechanism but also due to the tuning of individual algorithms such as the ones in the DPMM family.

Last but not least the new version updates all the dependencies to their latest versions and removes some of them such as the the commons-lang and lp_solve. The commons-lang, which was used for HTML parsing, is replaced with a faster custom HTMLParser implementation. The lp_solve is replaced with a pure Java simplex solver which means that Datumbox no longer requires specific system libraries installed on the operating system. Moreover lp_solve had to go because it uses LGPLv2 which is not compatible with the Apache 2.0 license.

The version 0.8.0 brings several more new features and improvements on the framework. For a detailed view of the changes please check the Changelog.

 

Don’t forget to clone the code of Datumbox Framework v0.8.0 from Github, check out the Code Examples and download the pre-trained Machine Learning models from Datumbox Zoo. I am looking forward to your comments and suggestions.



Source_link

Related Posts

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output
Al, Analytics and Automation

DeepSeek R1T2 Chimera: 200% Faster Than R1-0528 With Improved Reasoning and Compact Output

July 3, 2025
Confronting the AI/energy conundrum
Al, Analytics and Automation

Confronting the AI/energy conundrum

July 3, 2025
Baidu Open Sources ERNIE 4.5: LLM Series Scaling from 0.3B to 424B Parameters
Al, Analytics and Automation

Baidu Open Sources ERNIE 4.5: LLM Series Scaling from 0.3B to 424B Parameters

July 2, 2025
Novel method detects microbial contamination in cell cultures | MIT News
Al, Analytics and Automation

Novel method detects microbial contamination in cell cultures | MIT News

July 2, 2025
Baidu Researchers Propose AI Search Paradigm: A Multi-Agent Framework for Smarter Information Retrieval
Al, Analytics and Automation

Baidu Researchers Propose AI Search Paradigm: A Multi-Agent Framework for Smarter Information Retrieval

July 2, 2025
Merging design and computer science in creative ways | MIT News
Al, Analytics and Automation

Merging design and computer science in creative ways | MIT News

July 1, 2025
Next Post
Why Trust Matters in Marketing Today

Why Trust Matters in Marketing Today

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025
Eating Bugs – MetaDevo

Eating Bugs – MetaDevo

May 29, 2025
Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

Top B2B & Marketing Podcasts to Lead You to Succeed in 2025 – TopRank® Marketing

May 30, 2025
Entries For The Elektra Awards 2025 Are Now Open!

Entries For The Elektra Awards 2025 Are Now Open!

May 30, 2025

EDITOR'S PICK

List of Tropical Plants in Grow a Garden

List of Tropical Plants in Grow a Garden

June 25, 2025
Choosing the Right Container Platform

Choosing the Right Container Platform

May 29, 2025
60+ November Social Media Ideas + Canva Templates (2025)

60+ November Social Media Ideas + Canva Templates (2025)

June 9, 2025
Gemini Code Assist in Apigee API Management now generally available

Gemini Code Assist in Apigee API Management now generally available

June 18, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • Expanded access to Google Vids and no-cost AI tools in Classroom
  • How to Do a Reverse Image Search & Which Tools to Use
  • I Work Full-Time — Here’s the No-Pressure System That Helped Me Stay Consistent on Social Media
  • Squid Game X Script (No Key, Auto Win, Glass Marker)
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?