• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Wednesday, February 11, 2026
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

How to Build a Privacy-Preserving Federated Pipeline to Fine-Tune Large Language Models with LoRA Using Flower and PEFT

Josh by Josh
February 10, 2026
in Al, Analytics and Automation
0
How to Build a Privacy-Preserving Federated Pipeline to Fine-Tune Large Language Models with LoRA Using Flower and PEFT
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter


!pip -q install -U "protobuf<5" "flwr[simulation]" transformers peft accelerate datasets sentencepiece
import torch
if torch.cuda.is_available():
   !pip -q install -U bitsandbytes
import os
os.environ["RAY_DISABLE_USAGE_STATS"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import math
import random
import numpy as np
from typing import Dict, List, Tuple, Optional
from torch.utils.data import DataLoader
from datasets import Dataset
import flwr as fl
from flwr.common import Context
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, DataCollatorForLanguageModeling
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
SEED = 7
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("Device:", DEVICE)
GPU_MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
CPU_MODEL_ID = "distilgpt2"
MODEL_ID = GPU_MODEL_ID if DEVICE == "cuda" else CPU_MODEL_ID
MAX_LEN = 256 if DEVICE == "cuda" else 192
NUM_CLIENTS = 3
ROUNDS = 3
LOCAL_EPOCHS = 1
BATCH_SIZE = 2
GRAD_ACCUM = 4
LR = 2e-4
WARMUP_STEPS = 5
WEIGHT_DECAY = 0.0
LOG_EVERY = 10
CLIENT_TEXTS: Dict[int, List[str]] = {
   0: [
       "Policy memo: Employees must rotate on-call weekly and document incidents in the internal tracker.",
       "Runbook: If latency spikes, check the database connection pool and recent deploys, then roll back if needed.",
       "Security note: Never paste customer identifiers into public issue trackers. Use redacted tokens.",
       "Engineering guideline: Prefer idempotent retries for event processing; avoid duplicate side-effects.",
       "Postmortem template: impact, timeline, root cause, contributing factors, action items, owners, deadlines."
   ],
   1: [
       "Credit risk review: monitor delinquency curves by cohort and compare against seasonal baselines.",
       "Fraud signals: repeated small authorizations, device changes, and sudden merchant-category shifts require review.",
       "Portfolio strategy: tighten limits on volatile segments while maintaining service levels for stable accounts.",
       "Operational note: reconcile chargebacks weekly and track win-rate by reason code.",
       "Internal SOP: escalation path is analyst -> manager -> compliance for high-risk cases."
   ],
   2: [
       "Fleet ops: preventive maintenance reduces downtime; prioritize vehicles with repeated fault codes.",
       "Dispatch note: optimize routes by time windows and driver hours to reduce empty miles.",
       "Safety policy: enforce rest breaks and log inspections before long-haul trips.",
       "Inventory update: track spare parts usage; reorder thresholds should reflect lead time and seasonality.",
       "Customer SLA: late deliveries require proactive notifications and documented root cause."
   ],
}
for cid in list(CLIENT_TEXTS.keys()):
   base = CLIENT_TEXTS[cid]
   CLIENT_TEXTS[cid] = base + [f"Q: Summarize this for leadership. A: {t}" for t in base]
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True)
if tokenizer.pad_token is None:
   tokenizer.pad_token = tokenizer.eos_token
bnb_config: Optional[BitsAndBytesConfig] = None
if DEVICE == "cuda":
   compute_dtype = torch.bfloat16 if torch.cuda.get_device_capability(0)[0] >= 8 else torch.float16
   bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=compute_dtype)
if "gpt2" in MODEL_ID.lower():
   TARGET_MODULES = ["c_attn", "c_proj"]
else:
   TARGET_MODULES = ["q_proj", "k_proj", "v_proj", "o_proj"]
LORA_R = 16
LORA_ALPHA = 32
LORA_DROPOUT = 0.05
lora_config = LoraConfig(r=LORA_R, lora_alpha=LORA_ALPHA, lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", target_modules=TARGET_MODULES)
def model_primary_device(model) -> torch.device:
   return next(model.parameters()).device
def build_model_with_lora():
   if DEVICE == "cuda":
       model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto", quantization_config=bnb_config, torch_dtype="auto")
       model = prepare_model_for_kbit_training(model)
   else:
       model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float32)
       model.to("cpu")
   model = get_peft_model(model, lora_config)
   model.train()
   return model
def make_dataset(texts: List[str]) -> Dataset:
   ds = Dataset.from_dict({"text": texts})
   def tok(batch):
       return tokenizer(batch["text"], truncation=True, max_length=MAX_LEN, padding="max_length")
   ds = ds.map(tok, batched=True, remove_columns=["text"])
   return ds
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
def lora_state_keys(model) -> List[str]:
   sd = model.state_dict()
   keys = sorted([k for k in sd.keys() if "lora_" in k])
   if not keys:
       raise RuntimeError("No LoRA keys found. Your model might not have the target_modules specified. " f"Current TARGET_MODULES={TARGET_MODULES}, MODEL_ID={MODEL_ID}")
   return keys
def get_lora_ndarrays(model) -> List[np.ndarray]:
   sd = model.state_dict()
   keys = lora_state_keys(model)
   return [sd[k].detach().float().cpu().numpy() for k in keys]
def set_lora_ndarrays(model, arrays: List[np.ndarray]) -> None:
   keys = lora_state_keys(model)
   if len(keys) != len(arrays):
       raise ValueError(f"Mismatch: got {len(arrays)} arrays but expected {len(keys)}.")
   sd = model.state_dict()
   for k, arr in zip(keys, arrays):
       t = torch.from_numpy(arr).to(sd[k].device).to(sd[k].dtype)
       sd[k].copy_(t)
def cosine_warmup_lr(step: int, total_steps: int, base_lr: float, warmup_steps: int) -> float:
   if step < warmup_steps:
       return base_lr * (step + 1) / max(1, warmup_steps)
   progress = (step - warmup_steps) / max(1, total_steps - warmup_steps)
   return base_lr * 0.5 * (1.0 + math.cos(math.pi * progress))
@torch.no_grad()
def eval_loss(model, ds: Dataset, max_batches: int = 20) -> float:
   model.eval()
   dl = DataLoader(ds, batch_size=BATCH_SIZE, shuffle=False, collate_fn=collator)
   losses = []
   dev = model_primary_device(model)
   for i, batch in enumerate(dl):
       if i >= max_batches:
           break
       batch = {k: v.to(dev) for k, v in batch.items()}
       out = model(**batch, labels=batch["input_ids"])
       losses.append(float(out.loss.detach().cpu()))
   model.train()
   return float(np.mean(losses)) if losses else float("nan")
def train_one_client_round(model, ds: Dataset, epochs: int, lr: float, grad_accum: int, warmup_steps: int) -> Tuple[float, int]:
   dl = DataLoader(ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collator)
   total_steps = max(1, (len(dl) * epochs) // max(1, grad_accum))
   step = 0
   optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=WEIGHT_DECAY)
   optimizer.zero_grad(set_to_none=True)
   running = []
   examples = 0
   dev = model_primary_device(model)
   for _ in range(epochs):
       for bi, batch in enumerate(dl):
           batch = {k: v.to(dev) for k, v in batch.items()}
           out = model(**batch, labels=batch["input_ids"])
           loss = out.loss / grad_accum
           loss.backward()
           running.append(float(loss.detach().cpu()) * grad_accum)
           examples += batch["input_ids"].shape[0]
           if (bi + 1) % grad_accum == 0:
               lr_t = cosine_warmup_lr(step, total_steps, lr, warmup_steps)
               for pg in optimizer.param_groups:
                   pg["lr"] = lr_t
               optimizer.step()
               optimizer.zero_grad(set_to_none=True)
               step += 1
               if step % LOG_EVERY == 0:
                   print(f"  step={step}/{total_steps} loss={np.mean(running[-LOG_EVERY:]):.4f} lr={lr_t:.2e}")
   return float(np.mean(running)) if running else float("nan"), examples



Source_link

READ ALSO

Google AI Introduces Natively Adaptive Interfaces (NAI): An Agentic Multimodal Accessibility Framework Built on Gemini for Adaptive UI Design

Pricing Structure and Main Capabilities

Related Posts

Google AI Introduces Natively Adaptive Interfaces (NAI): An Agentic Multimodal Accessibility Framework Built on Gemini for Adaptive UI Design
Al, Analytics and Automation

Google AI Introduces Natively Adaptive Interfaces (NAI): An Agentic Multimodal Accessibility Framework Built on Gemini for Adaptive UI Design

February 11, 2026
Pricing Structure and Main Capabilities
Al, Analytics and Automation

Pricing Structure and Main Capabilities

February 10, 2026
3 Questions: Using AI to help Olympic skaters land a quint | MIT News
Al, Analytics and Automation

3 Questions: Using AI to help Olympic skaters land a quint | MIT News

February 10, 2026
AI at Home Statistics
Al, Analytics and Automation

AI at Home Statistics

February 10, 2026
Al, Analytics and Automation

Meet OAT: The New Action Tokenizer Bringing LLM-Style Scaling and Flexible, Anytime Inference to the Robotics World

February 9, 2026
37 AI Companions Statistics in 2025
Al, Analytics and Automation

37 AI Companions Statistics in 2025

February 9, 2026
Next Post
H&R Block Coupons and Deals: 20% Off Tax Prep in 2026

H&R Block Coupons and Deals: 20% Off Tax Prep in 2026

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
Google announced the next step in its nuclear energy plans 

Google announced the next step in its nuclear energy plans 

August 20, 2025

EDITOR'S PICK

AI Bots Are Closing in on Search Engine Bots

AI Bots Are Closing in on Search Engine Bots

June 22, 2025
The End of ‘Hire Fast, Fire Fast’ in Tech: Building Workforce Sustainability with EVP

The End of ‘Hire Fast, Fire Fast’ in Tech: Building Workforce Sustainability with EVP

June 12, 2025
TAG Bulletin: Q3 2025

TAG Bulletin: Q3 2025

November 13, 2025
Google launches AI-powered cultural learning experiments

Google launches AI-powered cultural learning experiments

November 27, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • 5W at Cosmoprof Miami 2026: Where Global Beauty Momentum Meets Market Demand
  • Okay, now exactly half of xAI’s founding team has left the company
  • Google AI Introduces Natively Adaptive Interfaces (NAI): An Agentic Multimodal Accessibility Framework Built on Gemini for Adaptive UI Design
  • The Most Insightful Economic Metric For Tracking Consumers
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?