• About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
Thursday, November 13, 2025
mGrowTech
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions
No Result
View All Result
mGrowTech
No Result
View All Result
Home Al, Analytics and Automation

A faster problem-solving tool that guarantees feasibility | MIT News

Josh by Josh
November 3, 2025
in Al, Analytics and Automation
0
A faster problem-solving tool that guarantees feasibility | MIT News
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter



Managing a power grid is like trying to solve an enormous puzzle.

Grid operators must ensure the proper amount of power is flowing to the right areas at the exact time when it is needed, and they must do this in a way that minimizes costs without overloading physical infrastructure. Even more, they must solve this complicated problem repeatedly, as rapidly as possible, to meet constantly changing demand.

To help crack this consistent conundrum, MIT researchers developed a problem-solving tool that finds the optimal solution much faster than traditional approaches while ensuring the solution doesn’t violate any of the system’s constraints. In a power grid, constraints could be things like generator and line capacity.

This new tool incorporates a feasibility-seeking step into a powerful machine-learning model trained to solve the problem. The feasibility-seeking step uses the model’s prediction as a starting point, iteratively refining the solution until it finds the best achievable answer.

The MIT system can unravel complex problems several times faster than traditional solvers, while providing strong guarantees of success. For some extremely complex problems, it could find better solutions than tried-and-true tools. The technique also outperformed pure machine learning approaches, which are fast but can’t always find feasible solutions.

In addition to helping schedule power production in an electric grid, this new tool could be applied to many types of complicated problems, such as designing new products, managing investment portfolios, or planning production to meet consumer demand.

“Solving these especially thorny problems well requires us to combine tools from machine learning, optimization, and electrical engineering to develop methods that hit the right tradeoffs in terms of providing value to the domain, while also meeting its requirements. You have to look at the needs of the application and design methods in a way that actually fulfills those needs,” says Priya Donti, the Silverman Family Career Development Professor in the Department of Electrical Engineering and Computer Science (EECS) and a principal investigator at the Laboratory for Information and Decision Systems (LIDS).

Donti, senior author of an open-access paper on this new tool, called FSNet, is joined by lead author Hoang Nguyen, an EECS graduate student. The paper will be presented at the Conference on Neural Information Processing Systems.

Combining approaches

Ensuring optimal power flow in an electric grid is an extremely hard problem that is becoming more difficult for operators to solve quickly.

“As we try to integrate more renewables into the grid, operators must deal with the fact that the amount of power generation is going to vary moment to moment. At the same time, there are many more distributed devices to coordinate,” Donti explains.

Grid operators often rely on traditional solvers, which provide mathematical guarantees that the optimal solution doesn’t violate any problem constraints. But these tools can take hours or even days to arrive at that solution if the problem is especially convoluted.

On the other hand, deep-learning models can solve even very hard problems in a fraction of the time, but the solution might ignore some important constraints. For a power grid operator, this could result in issues like unsafe voltage levels or even grid outages.

“Machine-learning models struggle to satisfy all the constraints due to the many errors that occur during the training process,” Nguyen explains.

For FSNet, the researchers combined the best of both approaches into a two-step problem-solving framework.

Focusing on feasibility

In the first step, a neural network predicts a solution to the optimization problem. Very loosely inspired by neurons in the human brain, neural networks are deep learning models that excel at recognizing patterns in data.

Next, a traditional solver that has been incorporated into FSNet performs a feasibility-seeking step. This optimization algorithm iteratively refines the initial prediction while ensuring the solution does not violate any constraints.

Because the feasibility-seeking step is based on a mathematical model of the problem, it can guarantee the solution is deployable.

“This step is very important. In FSNet, we can have the rigorous guarantees that we need in practice,” Hoang says.

The researchers designed FSNet to address both main types of constraints (equality and inequality) at the same time. This makes it easier to use than other approaches that may require customizing the neural network or solving for each type of constraint separately.

“Here, you can just plug and play with different optimization solvers,” Donti says.

By thinking differently about how the neural network solves complex optimization problems, the researchers were able to unlock a new technique that works better, she adds.

They compared FSNet to traditional solvers and pure machine-learning approaches on a range of challenging problems, including power grid optimization. Their system cut solving times by orders of magnitude compared to the baseline approaches, while respecting all problem constraints.

FSNet also found better solutions to some of the trickiest problems.

“While this was surprising to us, it does make sense. Our neural network can figure out by itself some additional structure in the data that the original optimization solver was not designed to exploit,” Donti explains.

In the future, the researchers want to make FSNet less memory-intensive, incorporate more efficient optimization algorithms, and scale it up to tackle more realistic problems.

“Finding solutions to challenging optimization problems that are feasible is paramount to finding ones that are close to optimal. Especially for physical systems like power grids, close to optimal means nothing without feasibility. This work provides an important step toward ensuring that deep-learning models can produce predictions that satisfy constraints, with explicit guarantees on constraint enforcement,” says Kyri Baker, an associate professor at the University of Colorado Boulder, who was not involved with this work.



Source_link

READ ALSO

Talk to Your TV — Bitmovin’s Agentic AI Hub Quietly Redefines How We Watch

How to Build a Fully Functional Custom GPT-style Conversational AI Locally Using Hugging Face Transformers

Related Posts

Talk to Your TV — Bitmovin’s Agentic AI Hub Quietly Redefines How We Watch
Al, Analytics and Automation

Talk to Your TV — Bitmovin’s Agentic AI Hub Quietly Redefines How We Watch

November 13, 2025
How to Build a Fully Functional Custom GPT-style Conversational AI Locally Using Hugging Face Transformers
Al, Analytics and Automation

How to Build a Fully Functional Custom GPT-style Conversational AI Locally Using Hugging Face Transformers

November 13, 2025
Datasets for Training a Language Model
Al, Analytics and Automation

Datasets for Training a Language Model

November 13, 2025
PR Newswire via Morningstar PR Newswire Introduces AI-Led Platform Redefining the Future of Public Relations
Al, Analytics and Automation

PR Newswire via Morningstar PR Newswire Introduces AI-Led Platform Redefining the Future of Public Relations

November 12, 2025
How to Build an End-to-End Interactive Analytics Dashboard Using PyGWalker Features for Insightful Data Exploration
Al, Analytics and Automation

How to Build an End-to-End Interactive Analytics Dashboard Using PyGWalker Features for Insightful Data Exploration

November 12, 2025
The AI Image Model That Could Redefine Visual Creativity
Al, Analytics and Automation

The AI Image Model That Could Redefine Visual Creativity

November 12, 2025
Next Post
How Much Can You Earn As A Freelance Copywriter

How Much Can You Earn As A Freelance Copywriter

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Communication Effectiveness Skills For Business Leaders

Communication Effectiveness Skills For Business Leaders

June 10, 2025
Trump ends trade talks with Canada over a digital services tax

Trump ends trade talks with Canada over a digital services tax

June 28, 2025
15 Trending Songs on TikTok in 2025 (+ How to Use Them)

15 Trending Songs on TikTok in 2025 (+ How to Use Them)

June 18, 2025
App Development Cost in Singapore: Pricing Breakdown & Insights

App Development Cost in Singapore: Pricing Breakdown & Insights

June 22, 2025
7 Best EOR Platforms for Software Companies in 2025

7 Best EOR Platforms for Software Companies in 2025

June 21, 2025

EDITOR'S PICK

Seeing Images Through the Eyes of Decision Trees

Seeing Images Through the Eyes of Decision Trees

August 23, 2025
Future-Facing B2B eBook

Future-Facing B2B eBook

July 2, 2025

The Scoop: Trump demands changes to drug pricing. Some pharma execs agree.

August 1, 2025
The Rise of AI Girlfriends You Don’t Have to Sign Up For

The Rise of AI Girlfriends You Don’t Have to Sign Up For

June 8, 2025

About

We bring you the best Premium WordPress Themes that perfect for news, magazine, personal blog, etc. Check our landing page for details.

Follow us

Categories

  • Account Based Marketing
  • Ad Management
  • Al, Analytics and Automation
  • Brand Management
  • Channel Marketing
  • Digital Marketing
  • Direct Marketing
  • Event Management
  • Google Marketing
  • Marketing Attribution and Consulting
  • Marketing Automation
  • Mobile Marketing
  • PR Solutions
  • Social Media Management
  • Technology And Software
  • Uncategorized

Recent Posts

  • How to Compare Your AI Visibility Against Your Competitors
  • Patient Waitlist Management Software Development: key Features
  • TAG Bulletin: Q3 2025
  • How to Stand Out in the Promotions Tab With Gmail Annotations
  • About Us
  • Disclaimer
  • Contact Us
  • Privacy Policy
No Result
View All Result
  • Technology And Software
    • Account Based Marketing
    • Channel Marketing
    • Marketing Automation
      • Al, Analytics and Automation
      • Ad Management
  • Digital Marketing
    • Social Media Management
    • Google Marketing
  • Direct Marketing
    • Brand Management
    • Marketing Attribution and Consulting
  • Mobile Marketing
  • Event Management
  • PR Solutions

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?